Skip to main content
Advanced Search

Filters: Tags: Nassau County (X) > Types: Map Service (X)

38 results (31ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing an online map of potentiometric-surface altitude contours in the Magothy and Jameco aquifers on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. This polyline shapefile consists of digital contours that represent the potentiometric-surface...
thumbnail
This model archive contains files for a set of groundwater flow, particle tracking, and management optimization models that simulate the area around the Navy-Northrop-Grumman contamination plume on Long Island, New York. These models were developed as in insets from the Long Island Regional “parent” Model, from which perimeter boundary conditions were inherited. In addition to input and output files for these models, this archive contains the modeling workflow python code and source data used to build the model. These materials have been included for repeatability and decision transparency.
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of Hudson Valley and New York City, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
A shapefile of the extent of irrigated agricultural fields which includes an attribute table of the irrigated acreage for the period between November 2022 and June 2023 was compiled for the full county extents of Brevard, Clay, Duval, Flagler, Indian River, Nassau, Osceola, Putnam, Seminole, St. Johns, and Volusia Counties, Florida. These eleven counties are fully or partially within the St. Johns River Water Management District (SJRWMD). Attributes for each polygon that represents a field include a general or specific crop type, irrigation system, and primary water source for irrigation.
thumbnail
The U.S. Geological Survey (USGS) is providing an online map of water level measurements in the Lloyd and North Shore aquifers on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. This point shapefile consists of digital points that represent water level altitudes in the Lloyd and...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
From March 2019 to September 2020, the U.S. Geological Survey, in cooperation with the New York City Department of Design and Construction and the New York State Department of Environmental Conservation, collected horizontal-to-vertical seismic (HVSR) surveys at 140 locations in New York, Bronx, Queens, Nassau, and Suffolk counties to estimate the thickness of unconsolidated sediments and the depth to bedrock (Lane and others, 2008). The passive-seismic method uses a single, broad-band three-component (two horizontal and one vertical) seismometer to record ambient seismic noise. In areas that have a strong acoustic contrast between the bedrock and overlying sediments, the seismic noise induces resonance at frequencies...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of north shore Long Island, New York. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem...
thumbnail
The U.S. Geological Survey (USGS) is providing online maps of water-table and potentiometric-surface altitude in the upper glacial, Magothy, Jameco, Lloyd, and North Shore aquifers on Long Island, New York, April–May 2016. Also provided is a depth-to-water map for Long Island, New York, April–May 2016. The USGS makes these maps and geospatial data available as REST Open Map Services (as well as HTTP, JSON, KML, and shapefile), so end-users can consume them on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3398 (Como and others, 2018; https://doi.org/10.3133/sim3398) further describes data collection and map preparation and presents 68x22 in. Portable Document...
thumbnail
The U.S. Geological Survey (USGS) is providing an online map of potentiometric-surface altitude contours in the Lloyd and North Shore aquifers on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. This polyline shapefile consists of digital contours that represent the potentiometric-surface...
thumbnail
​ The U.S. Geological Survey (USGS) is providing an online map of water-table altitude measurements in the upper glacial and Magothy aquifers on Long Island, New York, April-May 2013. USGS serves this map and geospatial data as a REST Open Map Service (as well as HTTP, JSON, KML, and shapefile), so end-users can use the map and data on mobile and web clients. A companion report, U.S. Geological Survey Scientific Investigations Map 3326 (Como and others, 2015; http://dx.doi.org/10.3133/sim3326) further describes data collection and map preparation and presents 68x22 in. PDF versions, 4 sheets, scale 1:125,000. Water level altitudes were measured at 334 observation wells and 1 supply well screened...


map background search result map search result map Potentiometric Surface Contours of the Lloyd and North Shore Aquifers, April-May 2013 Potentiometric Surface Contours of the Magothy and Jameco Aquifers, April-May 2013 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2013 Water Level Data in the Upper Glacial and Magothy Aquifers, April-May 2013 Depth to the Water Raster on Long Island, New York, April–May 2016 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2016 Potentiometric Surface Contours of the Magothy and Jameco Aquifers, April-May 2016 Water Level Data in the Magothy and Jameco Aquifers, April-May 2016 Stream and Lake Average Water-Level Altitudes, April-May 2016 Water Table Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Unvegetated to vegetated marsh ratio in Jamaica Bay to western Great South Bay salt marsh complex, New York Conceptual marsh units of north shore Long Island salt marsh complex, New York Elevation of marsh units in north shore Long Island salt marsh complex, New York Exposure potential of marsh units to environmental health stressors in north shore Long Island salt marsh complex, New York Mean tidal range of marsh units in Hudson Valley and New York City salt marsh complex, New York Horizontal-to-Vertical Spectral Ratio Soundings and Depth-to-Bedrock Data for New York City and Long Island, NY MODFLOW 6 models for simulating groundwater flow and a proposed remediation system in the sole-source aquifer system in southeastern Nassau County, New York GIS Shapefile of Irrigated Agricultural Acreage for 11 complete counties fully or partially within the St. Johns River Water Management District, 2022–23 MODFLOW 6 models for simulating groundwater flow and a proposed remediation system in the sole-source aquifer system in southeastern Nassau County, New York Unvegetated to vegetated marsh ratio in Jamaica Bay to western Great South Bay salt marsh complex, New York Conceptual marsh units of north shore Long Island salt marsh complex, New York Elevation of marsh units in north shore Long Island salt marsh complex, New York Exposure potential of marsh units to environmental health stressors in north shore Long Island salt marsh complex, New York Stream and Lake Average Water-Level Altitudes, April-May 2016 Mean tidal range of marsh units in Hudson Valley and New York City salt marsh complex, New York Horizontal-to-Vertical Spectral Ratio Soundings and Depth-to-Bedrock Data for New York City and Long Island, NY Water Table Data in the Upper Glacial and Magothy Aquifers, April-May 2016 Water Level Data in the Magothy and Jameco Aquifers, April-May 2016 Potentiometric Surface Contours of the Magothy and Jameco Aquifers, April-May 2016 Potentiometric Surface Contours of the Magothy and Jameco Aquifers, April-May 2013 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2013 Water Level Data in the Lloyd and North Shore Aquifers, April-May 2016 Potentiometric Surface Contours of the Lloyd and North Shore Aquifers, April-May 2013 Water Level Data in the Upper Glacial and Magothy Aquifers, April-May 2013 Depth to the Water Raster on Long Island, New York, April–May 2016 GIS Shapefile of Irrigated Agricultural Acreage for 11 complete counties fully or partially within the St. Johns River Water Management District, 2022–23