Skip to main content
Advanced Search

Filters: Tags: Nitrogen saturation (X)

6 results (33ms)   

View Results as: JSON ATOM CSV
Archived soil samples (1937-1999) and historic air quality data from the Los Angeles Basin were used for reconstructing the record of change between atmospheric NO(x) loads, soil delta(15)N values and the diversity of arbuscular mycorrhizae (AM), which are ubiquitous plant-fungus mutualists that control plant community productivity. A tripling of atmospheric NO(x) loads between 1937 and the 1970s was paralleled by soil nitrogen enrichment (delta(15)N = 3.18). From 1975 onwards, atmospheric NO(x) declined, but soils became nitrogen saturated (delta(15) N = -4 and NO(3)-nitrogen = 171mgkg(-1)). The shifts in the AM community followed 28 years of atmospheric nitrogen enrichment and coincided with the onset of soil...
The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7 kg ha−1 yr−1 of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but data from the National Atmospheric Deposition Program and Clean Air Status and Trends Network show no region-wide increase during the past 2 decades. Nitrogen loads in atmospheric wet deposition have increased since the mid-1980s, however, at three high elevation (>3000 m) sites east of the Continental Divide in the Front Range. Much of this increase...
Most forests in North America remain nitrogen limited, although recent studies have identified forested areas that exhibit symptoms of N excess, analogous to overfertilization of arable land. Nitrogen excess in watersheds is detrimental because of disruptions in plant/soil nutrient relations, increased soil acidification and aluminum mobility, increased emissions of nitrogenous greenhouse gases from soil, reduced methane consumption in soil, decreased water quality, toxic effects on fresh-water biota, and eutrophication of coastal marine waters. Elevated nitrate (NO- 3) loss to groundwater or surface waters is the primary symptom of N excess. Additional symptoms include increasing N concentrations and higher N:nutrient...
The natural abundance of nitrogen and oxygen isotopes in nitrate can be a powerful tool for identifying the source of nitrate in streamwater in forested watersheds, because the two main sources of nitrate, atmospheric deposition and microbial nitrification, have distinct δ18O values. Using a simple mixing model, we estimated the relative fractions in streamwater derived from these sources for two forested watersheds with markedly different streamwater nitrate outputs. In this study, we monitored δ15N and δ18O of nitrate biweekly in atmospheric deposition and in streamwater for 20 months at the Hubbard Brook Experimental Forest, New Hampshire, USA (moderate nitrogen export), and monthly in streamwater at the Bowl...
Categories: Publication; Types: Citation; Tags: 15N, 18O, Nitrate, nitrogen saturation
In the western United States vast acreages of land are exposed to low levels of atmospheric nitrogen (N) deposition, with interspersed hotspots of elevated N deposition downwind of large, expanding metropolitan centers or large agricultural operations. Biological response studies in western North America demonstrate that some aquatic and terrestrial plant and microbial communities are significantly altered by N deposition. Greater plant productivity is counterbalanced by biotic community changes and deleterious effects on sensitive organisms (lichens and phytoplankton) that respond to low inputs of N (3 to 8 kilograms N per hectare per year). Streamwater nitrate concentrations are elevated in high-elevation catchments...
The Rocky Mountains of Colorado and southern Wyoming receive atmospheric nitrogen (N) deposition that ranges from 2 to 7 kg ha?1 yr?1, and some previous research indicates pronounced ecosystem effects at the highest rates of deposition. This paper provides a critical review of previously published studies on the effects of atmospheric N deposition in the region. Plant community changes have been demonstrated through N fertilization studies, however, N limitation is still widely reported in alpine tundra and subalpine forests of the Front Range, and sensitivity to changes in snow cover alone indicate the importance of climate sensitivity in these ecosystems. Retention of N in atmospheric wet deposition is <50% in...