Skip to main content
Advanced Search

Filters: Tags: Nutrients (X) > Types: Citation (X) > Types: Map Service (X)

13 results (8ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
Synopsis: The goal of this study was to examine contaminant loadings associated with stormwater runoff from recently burned areas in urban fringe areas of southern California, to derive regional patterns of runoff and contaminant loadings in this context. Postfire stormwater runoff was sampled from five wildfires that each burned between 115 and 658 km2 of natural open space between 2003 and 2009. The area is characterized by classic Mediterranean climate conditions of relatively mild to cool wet winter and warm to hot dry summers. Between two and five storm events were sampled per site over the first one to two years following the fires for basic constituents, metals, nutrients, total suspended solids, and polycyclic...
thumbnail
Nonstationary streamflow due to environmental and human-induced causes can affect water quality over time, yet these effects are poorly accounted for in water-quality trend models. This data release provides instream water-quality trends and estimates of two components of change, for sites across the Nation previously presented in Oelsner et al. (2017). We used previously calibrated Weighted Regressions on Time, Discharge, and Season (WRTDS) models published in De Cicco et al. (2017) to estimate instream water-quality trends and associated uncertainties with the generalized flow normalization procedure available in EGRET version 3.0 (Hirsch et al., 2018a) and EGRETci version 2.0 (Hirsch et al., 2018b). The procedure...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds.
thumbnail
Synopsis: The objective of this study was to examine initial effects of the 2003 Lost Creek wildfire (southwestern Rocky Mountains of Alberta) on concentrations and production (yield and total export) of several nitrogen (N) forms, and to explore initial recovery of these effects within the first 3 years after the fire. During the first postfire year, nitrate (NO3–), dissolved organic nitrogen (DON), and total nitrogen (TN) concentrations in severely burned watershed streams were 6.5, 4.1, and 5.3 times greater, respectively, than those in reference streams. Weaker effects were evident for concentrations of ammonium (NH4+; 1.5 times) and total particulate nitrogen (TPN; 3.0 times). A rapid decline in mean watershed...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds.
thumbnail
The United States Geological Survey’s (USGS) SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was developed to aid in the interpretation of monitoring data and simulate water-quality conditions in streams across large spatial scales. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based streamflow...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Yields (represents the mass of constituent transported from a unit area of a given watershed) are used to compare the export loads from one basin to another. Yield results are obtained by dividing the annual load (pounds) of a given constituent by the respective watershed area (acres)...
thumbnail
Suspended particles are an essential component of large rivers influencing channel geomorphology, biogeochemical cycling of nutrients, and food web resources. The Upper Mississippi River (UMR) is a large floodplain river that exhibits pronounced spatiotemporal variation in environmental conditions and biota, providing an ideal environment for investigating dynamics of suspended particles in large river ecosystems. Here we investigated two questions: (1) How do suspended particle characteristics (e.g., size and morphology) vary temporally and spatially? and (2) What environmental variables have the strongest association with particle characteristics? Water sampling was conducted in June, August, and September of...
thumbnail
Tributary inputs to lakes and seas are measured at riverine gages, upstream of lentic influence. Between these riverine gages and the nearshore zones of large waterbodies lie rivermouths, which may retain, transform and contribute materials to the nearshore zone. During the summer of 2011, twenty-three tributary systems of the Laurentian Great Lakes were sampled from river to nearshore for dissolved and particulate carbon (C), nitrogen (N) and phosphorus (P) concentrations, as well as bulk seston and chlorohyll a concentrations. Rivermouths had higher concentrations of C and P than nearshore areas and more chlorophyll a than upstream river waters. Compared to a conservative mixing model, rivermouths as a class appeared...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....


    map background search result map search result map Wildfire Impacts on nitrogen concentration and production from headwater streams in southern Alberta's Rocky Mountains. Stormwater contaminant loading following southern California wildfires Do rivermouths alter nutrient and seston delivery to the nearshore - data Water-quality and streamflow datasets used for estimating long-term mean daily streamflow and annual loads to be considered for use in regional streamflow, nutrient and sediment SPARROW models, United States, 1999-2014 Water-quality trends and trend component estimates for the Nation's rivers and streams using Weighted Regressions on Time, Discharge, and Season (WRTDS) models and generalized flow normalization, 1972-2012 Spatial and temporal dynamics of suspended particle characteristics and composition in Navigation Pool 19 of the Upper Mississippi River data Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2016 Chesapeake Bay Nontidal Network 1985-2016: Annual loads Chesapeake Bay Nontidal Network 1985-2016: Monthly loads Chesapeake Bay Nontidal Network 1985-2016: Short- and long-term trends Chesapeake Bay Nontidal Network 1985-2016: Average annual yields Chesapeake Bay Nontidal Network 1985-2016: WRTDS input data Chesapeake Bay Nontidal Network 1985-2016: WRTDS output data Spatial and temporal dynamics of suspended particle characteristics and composition in Navigation Pool 19 of the Upper Mississippi River data Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2016 Chesapeake Bay Nontidal Network 1985-2016: Annual loads Chesapeake Bay Nontidal Network 1985-2016: Monthly loads Chesapeake Bay Nontidal Network 1985-2016: Short- and long-term trends Chesapeake Bay Nontidal Network 1985-2016: Average annual yields Chesapeake Bay Nontidal Network 1985-2016: WRTDS input data Chesapeake Bay Nontidal Network 1985-2016: WRTDS output data Stormwater contaminant loading following southern California wildfires Do rivermouths alter nutrient and seston delivery to the nearshore - data Water-quality and streamflow datasets used for estimating long-term mean daily streamflow and annual loads to be considered for use in regional streamflow, nutrient and sediment SPARROW models, United States, 1999-2014 Water-quality trends and trend component estimates for the Nation's rivers and streams using Weighted Regressions on Time, Discharge, and Season (WRTDS) models and generalized flow normalization, 1972-2012