Skip to main content
Advanced Search

Filters: Tags: PERMAFROST (X) > Types: OGC WFS Layer (X) > Extensions: Shapefile (X)

37 results (85ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Electrical resistivity tomography (ERT) measurements were made along transects 110 - 222 m in length to quantify subsurface permafrost characteristics. ERT transects were collected across a fireline boundary within the Bonanza Creek Long Term Ecological Research (LTER) site where repeat measurements have been made since 2014; across and adjacent to two thermokarst lakes, Vault Lake and Goldstream Lake; and along two profiles at the North Star golf course...
thumbnail
A suite of morphological metrics were derived from existing shoreline and elevation datasets for barrier islands and spits located along the north-slope coast of Alaska between Cape Beaufort and the U.S.-Canadian border. This dataset includes shoreline vectors, including data source and acquisition date, from five time periods: 1950s, 1980s, 2000s, 2010s, and 2020s. The shoreline vectors were combined to produce polygons upon which the metrics were calculated.
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at two sites in Interior Alaska in 2019 and 2020 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. In September 2019, electrical resistivity tomography (ERT) and downhole nuclear magnetic resonance (NMR) data were used to quantify permafrost characteristics across the shorelines of Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska. Three 222 m ERT survey lines were collected perpendicular to the North, East, and South shorelines, and two 110 m lines were collected parallel to the southeast and northeast shorelines. Models of electrical resistivity...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
This dataset includes a reference baseline used by the Digital Shoreline Analysis System (DSAS) to calculate rate-of-change statistics for the shorelines near Barter Island, Alaska for the time period 1947 to 2020. This baseline layer serves as the starting point for all transects cast by the DSAS application and can be used to establish measurement points used to calculate shoreline-change rates.
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). In April 2018, seven boreholes were emplaced to depths of 2.3-2.5 meters (m) to allow for repeat logging with downhole nuclear magnetic resonance (NMR) to quantify the spatial and temporal variations in unfrozen water content within active-layer and permafrost soils. NMR data were collected on ten separate occasions between April 2018 and October 2020. In June...
This dataset includes one vector shapefile delineating the position of the shorelines at Barter Island, Alaska spanning seven decades, between the years 1947 and 2020. Shoreline positions delineated from a combination of aerial photography, declassified satellite photography, and very-high resolution satellite imagery can be used to quantify the movement of the shoreline through time. These data were used to calculate rates of change every 10 meters alongshore using the Digital Shoreline Analysis System (DSAS) version 5.0. DSAS uses a measurement baseline method to calculate rate-of-change statistics. Transects are cast from the reference baseline to intersect each shoreline, establishing measurement points used...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
thumbnail
Lake polygons within the Fish Creek Watershed, Alaska were created and classified for a number of variables relevant to size, depth, hydrology, connectivity etc. Products derived from a 5m resolution IfSAR digital surface model by calculating a zero slope. Each feature was expanded by one pixel around the entire perimeter since all waterbodies were truncated by this during the slope calculation. Lakes >=1ha were manually extracted from the dataset and their perimeters further corrected using 2002 CIR orthophotography.
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Shapefile; Tags: AQUATIC ECOSYSTEMS, AQUATIC ECOSYSTEMS, Academics & scientific researchers, Arctic Landscape Conservation Cooperative data.gov, BIOSPHERE, All tags...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
thumbnail
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (less than 1 m) and deeper (greater than 1 m) impacts of fire on permafrost along 14 transects that span burned-unburned boundaries in different landscape settings within interior...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
thumbnail
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Electrical resistivity tomography (ERT) measurements were made along transects 110-222 meters (m) in length to quantify subsurface permafrost characteristics. ERT transects were collected across a fireline boundary within the Bonanza Creek Long Term Ecological Research (LTER) site where repeat measurements have been made since 2014; across and adjacent to two thermokarst lakes, Vault Lake and Goldstream Lake; and along two profiles at the North Star golf...
Geophysical measurements and related field data were collected by the U.S. Geological Survey (USGS) at the Alaska Peatland Experiment (APEX) site in Interior Alaska from 2018 to 2020 to characterize subsurface thermal and hydrologic conditions along a permafrost thaw gradient. The APEX site is managed by the Bonanza Creek LTER (Long Term Ecological Research). Nine instrument monitoring sites (APEX1-APEX9) were established in April 2018. To quantify permafrost and thaw zone characteristics along the instrumented gradient, electrical resistivity tomography (ERT) data were collected in August 2018 along four 82 meter (m)-long transects between select sites: APEX1-3, APEX5-3, APEX5-7, and APEX6-8. Data were collected...


map background search result map search result map Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2014 Electrical resistivity tomography (ERT) data; Alaska, 2014 Borehole Nuclear Magnetic Resonance Data; Alaska, 2014 Borehole Nuclear Magnetic Resonance Inverted Models; Alaska, 2014 Electrical Resistivity Tomography Observations; Alaska, 2015 final Fish Creek Watershed Lake Classification Electrical Resistivity Tomography Inverted Models Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Inverted Models Alaska 2016-2017 Permafrost Soil Measurements in Alaska 2016-2017 Alaska permafrost characterization: Geophysical and related field data collected from 2019-2020 Permafrost characterization at the Alaska Peatland Experiment (APEX): Geophysical and related field data collected from 2018-2020 Historical shoreline vectors for barrier islands and spits along the north coast of Alaska between Cape Beaufort and the U.S.-Canadian border, 1947 to 2019 Historical shoreline positions at Barter Island, Alaska for the years spanning 1947 to 2020 Offshore baseline generated to calculate shoreline change rates near Barter Island, Alaska APEX Electrical Resistivity Tomography (ERT) Data and Models from 2018 Alaska permafrost characterization: Geophysical and related field data collected in 2021 Alaska permafrost characterization: Electrical Resistivity Tomography (ERT) data collected in 2021 Permafrost characterization at the Alaska Peatland Experiment (APEX): Geophysical and related field data collected from 2018-2020 APEX Electrical Resistivity Tomography (ERT) Data and Models from 2018 Offshore baseline generated to calculate shoreline change rates near Barter Island, Alaska Historical shoreline positions at Barter Island, Alaska for the years spanning 1947 to 2020 Alaska permafrost characterization: Geophysical and related field data collected from 2019-2020 Alaska permafrost characterization: Geophysical and related field data collected in 2021 Alaska permafrost characterization: Electrical Resistivity Tomography (ERT) data collected in 2021 Fish Creek Watershed Lake Classification Electrical Resistivity Tomography Inverted Models Alaska 2016-2017 Permafrost Soil Measurements in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Inverted Models Alaska 2016-2017 Electrical Resistivity Tomography Observations; Alaska, 2015 final Fire impacts on permafrost in Alaska: Geophysical and other field data collected in 2014 Electrical resistivity tomography (ERT) data; Alaska, 2014 Borehole Nuclear Magnetic Resonance Data; Alaska, 2014 Borehole Nuclear Magnetic Resonance Inverted Models; Alaska, 2014 Historical shoreline vectors for barrier islands and spits along the north coast of Alaska between Cape Beaufort and the U.S.-Canadian border, 1947 to 2019