Skip to main content
Advanced Search

Filters: Tags: Potentiometric surface (X) > partyWithName: U.S. Geological Survey (X)

58 results (374ms)   

View Results as: JSON ATOM CSV
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
The Nacatoch Sand in southwestern Arkansas, hereafter referred to as the Nacatoch aquifer, is a source of groundwater for agricultural, domestic, industrial, and public use in Clark, Hempstead, Little River, Miller, and Nevada counties. Water-level altitudes measured in 39 wells completed in the Nacatoch aquifer were used to create a potentiometric-surface map. Groundwater flow direction is towards the south and southeast in Hempstead, Little River, and Nevada Counties in southwestern Arkansas. A possible cone of depression may exist in southern Clark County and likely alters groundwater flow from a regional direction toward the depression. This shapefile depicts the generalized study area of the Southwest Nacatoch...
thumbnail
The maximum, and 80th, 90th, and 96th percentiles of the annual maximums of daily water levels recorded at monitoring sites in and near Miami-Dade County, Florida, during the 1974-2009 water years. [≥, greater than or equal to; %, percent; GW, groundwater; NPS, National Park Service; SFWMD, South Florida Water Management District; USGS, U.S. Geological Survey. All data adjusted to the North American Vertical Datum of 1988. Latitude and longitude are in decimal degrees]
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
The Nacatoch Sand in southwestern Arkansas, hereafter referred to as the Nacatoch aquifer, is a source of groundwater for agricultural, domestic, industrial, and public use inClark, Hempstead, Little River, Miller and Nevada counties. Water-level altitudes measured in 39 wells completed in the Nacatoch aquifer were used to create a potentiometric-surface map. Groundwater flow direction is towards the south and southeast in Hempstead, Little River, and Nevada Counties in southwestern Arkansas. A possible cone of depression may exist in southern Clark County and likely alters groundwater flow from a regional direction toward the depression. This shapefile depicts the generalized extent of the Southwest Nacatoch aquifer.
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set contains the potentiometric water-level altitude contours representing the 2009 potentiometric surface of the basin fill groundwater system of Dixie Valley, west-central Nevada.
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
Statistics of daily water levels recorded at monitoring sites in or near Miami-Dade County, Florida, during the 1974—2009 water years ( a period of 13,149 days). [GW, groundwater; NPS, National Park Service; SFWMD, South Florida Water Management District; SW, surface water; USGS, U.S. Geological Survey. All data adjusted to the North American Vertical Datum of 1988. Latitude and longitude are in decimal degrees.]
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains contour lines generated from the base of FAS raster.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set describes the water-table contours that were used to create a map of the generalized potentiometric surface of the Arikaree aquifer in the Pine Ridge Indian Reservation and Bennett County. The contours were based on water levels in wells completed in the Arikaree aquifer that were measured between 1929 and 2006.
thumbnail
The regional Ozark aquifer potentiometric-surface map shows the altitude at which the water level would have risen in tightly cased wells and represents conditions during the period from November 2014 through January 2015. Water levels were measured during this period to ensure that wells had adequate time to recover from previous summer pumping and prior to the start of the 2015 summer pumping season. Groundwater-level data from 178 wells cased completely in and open to the Ozark aquifer are available from the USGS National Water Information System (NWIS; data available at http:// waterdata.usgs.gov/nwis). Streams and springs in the study area represent the intersection of the groundwater table with land surface;...
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. This feature class contains 50 foot interval contour lines generated from the top of FAS raster.


map background search result map search result map Data, Statistics, and Geographic Information System Files, Pertaining to Mapping of Water Levels in the Biscayne Aquifer, Water Conservation Areas, and Everglades National Park, Miami-Dade County, Florida, 2000-2009 - Scientific data associated with USGS SIR 2016-5005 Table 6-1 Table 4-1 Map 03 Map 06 Map 07 Map 08 Map 10 Map 11 Map 14 Map 15 Map 01 Map 02 Ozark aquifer water-level contour dataset, SIM3348 SW Nacatoch study area.shp SW Nacatoch aquifer extent.shp DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Potentiometric surface contours for the top of the Floridan aquifer system - 50 foot interval DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Contours for the base of the Floridan aquifer system Water-table contours for the Arikaree aquifer, Pine Ridge Indian Reservation and Bennett County, South Dakota Potentiometric water-level altitude contours of Dixie Valley, west-central Nevada Map 10 SW Nacatoch aquifer extent.shp Map 01 Potentiometric water-level altitude contours of Dixie Valley, west-central Nevada Map 03 Map 11 Map 14 Map 06 Map 02 Map 07 Map 08 Map 15 Data, Statistics, and Geographic Information System Files, Pertaining to Mapping of Water Levels in the Biscayne Aquifer, Water Conservation Areas, and Everglades National Park, Miami-Dade County, Florida, 2000-2009 - Scientific data associated with USGS SIR 2016-5005 Table 6-1 Table 4-1 SW Nacatoch study area.shp Water-table contours for the Arikaree aquifer, Pine Ridge Indian Reservation and Bennett County, South Dakota Ozark aquifer water-level contour dataset, SIM3348 DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Contours for the base of the Floridan aquifer system DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Potentiometric surface contours for the top of the Floridan aquifer system - 50 foot interval