Skip to main content
Advanced Search

Filters: Tags: Snowpack (X) > partyWithName: Colorado Water Science Center (X)

5 results (19ms)   

View Results as: JSON ATOM CSV
thumbnail
Ground-based discrete snowpack measurements were collected during winter field campaigns starting in 2020. These data were collected as part of the U.S. Geological Survey (USGS) Next Generation Water Observing System (NGWOS) Upper Colorado River Basin project focusing on the relation between snow dynamics and water resources. This data release consists of three child items. Each child item contains snow depth, snow density, snow temperature, or snow water equivalent values measured discretely in the field. The data are provided in comma separated value (CSV) files.
thumbnail
Discrete snow depth data were collected during multiple winter campaigns during 2020–22. These data were collected as part of the U.S. Geological Survey (USGS) Next Generation Water Observing System (NGWOS) Upper Colorado River Basin project focusing on the relation of snow dynamics and water resources. Snow depth was measured using either an avalanche probe and handheld global positioning system (GPS) unit or a snow depth probe with attached Juniper Systems Geode GPS receiver and a Mesa tablet. These data are released in a comma separated value file.
thumbnail
Discrete snowpack data were collected during winter field campaigns from 2020 to 2022. These data were collected as part of the U.S. Geological Survey (USGS) Next Generation Water Observing System (NGWOS) Upper Colorado River Basin project focusing on the relation between snow dynamics and water resources. After a snow pit was dug, the pit face was analyzed for discrete snowpack measurements. Measurements taken were mass, temperature, and total depth. Using the mass values taken with a density cutter, the snow density and snow water equivalent were calculated. These data are released in a comma separated value file.
thumbnail
Discrete snow data were collected during multiple winter field campaigns from 2021 to 2022. This data was collected as part of the U.S. Geological Survey (USGS) Next Generation Water Observing System (NGWOS) project focusing on the relation between snow dynamics and the water cycle of a basin. A Snow Water Equivalent (SWE) Coring Tube was used to measure snow depth and mass of snow within the core. These values were used to calculate snow density and snow water equivalent of the core. These data were released in a comma separated value file.
thumbnail
This data release contains SnowModel snow evolution simulation output on a 100-meter (m) geospatial grid for a 311 kilometer (km) × 300 km model domain in Colorado, United States, encompassing the Colorado and Gunnison River Basin headwaters in the Upper Colorado River Basin. Weather Research and Forecasting (WRF) Model convection-permitting and orography-resolving (4-km grid spacing) regional climate simulations provided the atmospheric forcing conditions to drive SnowModel in both a current and future climate scenario. A pair of continuous 13-water-year (2001-13) WRF model simulations was utilized: (1) a current climate control (CTL) simulation forced using ERA-Interim reanalysis, and (2) a future climate simulation...


    map background search result map search result map High Resolution Current and Future Climate SnowModel Simulations in the Upper Colorado River Basin NGWOS Ground Based Discrete Snowpack Measurements Discrete Snowpack Measurements of Snow Density and Snow Water Equivalent in the Upper Colorado River Basin, 2020-22 Discrete Snow Core Measurements of Snow Depth, Density, and Snow Water Equivalent in the Upper Colorado River Basin, 2020-22 Discrete Snow Depth Measurements in the Upper Colorado River Basin, 2020-22 NGWOS Ground Based Discrete Snowpack Measurements Discrete Snowpack Measurements of Snow Density and Snow Water Equivalent in the Upper Colorado River Basin, 2020-22 Discrete Snow Core Measurements of Snow Depth, Density, and Snow Water Equivalent in the Upper Colorado River Basin, 2020-22 Discrete Snow Depth Measurements in the Upper Colorado River Basin, 2020-22 High Resolution Current and Future Climate SnowModel Simulations in the Upper Colorado River Basin