Skip to main content
Advanced Search

Filters: Tags: Species distribution model (X) > partyWithName: Ecosystems (X)

128 results (36ms)   

View Results as: JSON ATOM CSV
Here we present the map of probable suitable habitat for Harwood's eriastrum (Eriastrum harwoodii). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods and other additional...
Here we present the map of potential suitable habitat for Tehachapi monardella (Monardella linoides ssp. Oblonga). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit...
Here we present the map of potential suitable habitat for Parish’s daisy (Erigeron parishii). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit future habitat modelling...
Here we present the map of potential suitable habitat for Coachella Valley milk-vetch (Astragalus lentiginosus var. coachellae). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most...
Here we present the map of potential suitable habitat for Amargosa niterwort (Nitrophila mohavensis). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit future habitat...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
Here we present the map of potential suitable habitat for Little San Bernardino Mountains linanthus (Linanthus maculatus). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely...
Here we present the map of potential suitable habitat for Orcutt’s woody aster (Xylorhiza orcuttii). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit future habitat...
Here we present the map of potential suitable habitat for Cushenberry buckwheat (Eriogonum ovalifolium var. vineum). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit...
Here we present the map of potential suitable habitat for Desert cymopterus (Cymopterus deserticola). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit future habitat...
thumbnail
These data contain the results from the North American Bat Monitoring Program's (NABat) integrated species distribution model (iSDM) for tricolored bats (Perimyotis subflavus). The provided tabular data include predictions (with uncertainty) for tricolored bat occupancy probabilities (i.e., probability of presence) based on data from the entire summer season (May 1–Aug 31), averaged from 2017-2022, in each NABat grid cell (5km x 5km scale) across the range of the species. Specifically, predictions represent occupancy probabilities in the pre-volancy season in the summer (May 1 – July 15), i.e., the period of time before juveniles can fly and become detectable. Predictions were produced using an analytical pipeline...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
thumbnail
Preserving native species diversity is fundamental to ecosystem conservation. Selecting appropriate native species for use in restoration is a critical component of project design and may emphasize species attributes such as life history, functional type, pollinator services, and nutritional value for wildlife. Determining which species are likely to establish and persist in a particular environment is a key consideration. Species distribution models (SDMs) characterize relationships between species occurrences and the physical environment (e.g., climate, soil, topographic relief) and provide a mechanism for assessing which species may successfully propagate at a restoration site. In conjunction with information...
Here we present the map of potential suitable habitat for Harwood's eriastrum (Eriastrum harwoodii). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit future habitat...
Here we present the map of probable suitable habitat for Cushenberry oxytheca (Acanthoscyphus parishii var. goodmaniana). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods...


map background search result map search result map Species Distribution Model (SDM) for Achnatherum hymenoides in the Mojave Desert Species Distribution Model (SDM) for Asclepias erosa in the Mojave Desert Species Distribution Model (SDM) for Astragalus layneae in the Mojave Desert Species Distribution Model (SDM) for Atriplex hymenelytra in the Mojave Desert Species Distribution Model (SDM) for Eriogonum inflatum in the Mojave Desert Species Distribution Model (SDM) for Lycium cooperi in the Mojave Desert Species Distribution Model (SDM) for Stephanomeria exigua in the Mojave Desert Species Distribution Model (SDM) for Yucca schidigera in the Mojave Desert North American Bat Monitoring Program (NABat) Integrated Summer Species Distribution Model: Predicted Tricolored Bat Occupancy Probabilities Species Distribution Model (SDM) for Achnatherum hymenoides in the Mojave Desert Species Distribution Model (SDM) for Asclepias erosa in the Mojave Desert Species Distribution Model (SDM) for Astragalus layneae in the Mojave Desert Species Distribution Model (SDM) for Atriplex hymenelytra in the Mojave Desert Species Distribution Model (SDM) for Eriogonum inflatum in the Mojave Desert Species Distribution Model (SDM) for Lycium cooperi in the Mojave Desert Species Distribution Model (SDM) for Stephanomeria exigua in the Mojave Desert Species Distribution Model (SDM) for Yucca schidigera in the Mojave Desert North American Bat Monitoring Program (NABat) Integrated Summer Species Distribution Model: Predicted Tricolored Bat Occupancy Probabilities