Skip to main content
Advanced Search

Filters: Tags: Upper Colorado River (X)

67 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset represents ease of access to bottomland areas for vegetation treatments. Access may be by road, 4x4 near road, hike in by field crews or requiring overnight camping or raft access. Access is considered for each side of the river separately.
thumbnail
This data set shows the extent of the Colorado River Conservation Planning project bottomland area as delineated by topography and vegetation, The bottomland area is subdivided into 1 km polygons measured from the upstream project boundary. Reach breaks were determined by large topographic shifts and/or tributary junctions by John Dohrenwend. Please see the project report for more details.
thumbnail
This is a model showing general habitat diversity, including both the structural and cover type diversity. See Open File Report, Rasmussen and Shafroth, Colorado River Conservation Planning for geoprocessing details.
thumbnail
This dataset represents the relative average amount of non-woody cover within 2 ha) of bottomland along the Colorado River from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation...
thumbnail
This dataset represents the variety (unique structural classes: water, bare, herbaceous, short shrubs, medium shrubs, short trees, tall trees) within 1 ha of bottomland areas. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation of ground qualities. Due to the "snapshot" nature of the aerial photos,...
thumbnail
This map shows the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: fast water (main channel, secondary channel), and still water types (backwater, isolated pool and tributary channel).
thumbnail
These tabular data sets represent daily climate metrics processed from 4 kilometer GridMET data (Abatzoglou, 2013) for the period of record 1980 through 2020 and compiled for three spatial components: select United States Geological Survey stream gage basins (Staub and Wieczorek, 2023), 2) individual reach flowline catchments of the Upper and Lower Colorado (ucol) portions of the Geospatial Fabric for the National Hydrologic Model, version 1.1 (nhgfv11, Bock and others, 2020 ), and 3) the upstream watersheds of each individual nhgfv11 flowline catchments. Flowline reach catchment information characterizes data at the local scale using the python tool set called gdptools (McDonald, 2021). Reach catchments accumulated...
thumbnail
This dataset represents the prevalence of trees as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This map shows stillness of water near bank vegetation within 15 m of the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: main channel, secondary channel, backwater, isolated pool and tributary channel.
thumbnail
These tabular data sets represent the average daily soil moisture water content (kg/m^2) for four different soil layers processed from North American Land Data Assimilation System (NLDAS-2) data (Xia and others, 2012) for the period of record 1980 through 2020 and compiled for three spatial components: 1) select United States Geological Survey stream gage basins (Staub and Wieczorek, 2023), 2) individual reach flowline catchments of the Upper Colorado (ucol) portion of the Geospatial Fabric for the National Hydrologic Model, version 1.1 (nhgfv11, Bock and others, 2020 ), and 3) the upstream watersheds of each individual nhgfv11 flowline catchments. Flowline reach catchment information characterizes data at the local...
thumbnail
These data are the primary data used to model rainbow trout growth in Glen Canyon. Fish growth data were collected from nighttime boat electrofishing field campaigns conducted five to six times per year in April, July, September, and January, from April 2012 through November 2021 for a total of 9798 observations of mark-recapture-based growth. Sampling was conducted in a five km reach in the lower portion of the Glen Canyon tailwater (3.7-8.9 km upstream of Lees Ferry, AZ). Two nights of sampling occurred on each trip, with the central 2-3 km of the reach sampled on both nights. After capture, fish were kept in aerated 40-L buckets and transported to a central processing location. Groups of 10-15 fish were anesthetized...
thumbnail
This dataset represents the diversity of woody cover types (averaged per 1.5 ha) as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This dataset represents the prevalence of tamarisk (tamarisk penalty) as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation of...
thumbnail
This is a habitat suitability model riparian understory species in the Colorado River bottomland in Utah. The model incorporates the density of shrubs, the number of shrub species present, and the stillness of adjacent water.
thumbnail
This dataset represents the presence/absence of non-native, woody and herbaceous cover types in vegetation patches, as mapped from high resolution imagery from 2010. Each type (woody or herbaceous) requires different techniques, equipment and approaches, impacting treatment costs. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This dataset represents the prevalence of native trees as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This dataset represents the prevalence of tamarisk as mapped along the Colorado River bottomland from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. photos, this cover layer reflects conditions that existed when the imagery was collected (September, 2010). This mapping was conducted as part of the Colorado River Conservation Planning Project, a joint effort between the National Park Service, The Nature Conservancy, US Geological Survey, Bureau of Land Management, and Utah Forestry Fire and State Lands.
thumbnail
This is a fire risk model for riparian trees on the Colorado River bottomland in Utah. The model incorporates the prevalence of riparian trees and tamarisk, and proximity to human caused ignition sources (campgrounds and roads). See Open File Report, Rasmussen and Shafroth, Colorado River Conservation Planning, for geoprocessing details.
This site is for data and information compilation and sharing related to the work of the DRB Integrated Modeling effort of the Predictive Understanding of Multiscale Processes (PUMP) project. PUMP is advancing multi-scale, integrated modeling capabilities to address priority water resource issues within the Integrated Water Prediction (IWP) program, Integrated Water Science (IWS) Basin studies, Integrated Water Availability Assessments (IWAAs), and other relevant Water Mission Area (WMA) project efforts. Development and testing of modeling approaches occurs at multiple scales spanning national and sub-national domains.  Models will leverage physical process-driven approaches, data-driven approaches (statistical...


map background search result map search result map Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - Tamarisk Penalty for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Prevalence of Trees for Riparian Overstory Layer Model Conservation Planning for the Colorado River in Utah - Diversity of Woody Structure for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Riparian Understory Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Presence of Still Water Plus 20 m for Riparian Understory Model Conservation Planning for the Colorado River in Utah - Distance to Permanent Water for Rocky Fringe Snakes Model Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Structural Types of Non-Native Species for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Density of Native Riparian Trees for Fire Risk Model Conservation Planning for the Colorado River in Utah - Density of Tamarisk for Fire Risk Model Conservation Planning for the Colorado River in Utah - Fire Risk Model with Human Ignition Sources Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Bottomland Boundary of the Colorado River Divided at Homogeneous River Reaches Rainbow trout growth data and growth covariate data from Glen Canyon, Colorado River, Arizona, 2012-2021 Data-Driven Drought Prediction Project Model Inputs for Upper and Lower Colorado Portions of the National Hydrologic Geo-Spatial Fabric version 1.1 and Select U.S. Geological Survey Streamgage Basins: Daily Climate Metrics Derived from GridMET, 1980 - 2020 Data-Driven Drought Prediction Project Model Inputs for Upper and Lower Colorado Portion of the National Hydrologic Geo-Spatial Fabric version 1.1 and Select U.S. Geological Survey Streamgage Basins: Daily Climate Metrics Derived from NLDAS2, 1980 - 2020 Rainbow trout growth data and growth covariate data from Glen Canyon, Colorado River, Arizona, 2012-2021 Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - Riparian Understory Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Structural Types of Non-Native Species for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - General Diversity Model Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Diversity of Woody Structure for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Prevalence of Trees for Riparian Overstory Layer Model Conservation Planning for the Colorado River in Utah - Tamarisk Penalty for Riparian Overstory Model Conservation Planning for the Colorado River in Utah - Density of Tamarisk for Fire Risk Model Conservation Planning for the Colorado River in Utah - Density of Native Riparian Trees for Fire Risk Model Conservation Planning for the Colorado River in Utah - Fire Risk Model with Human Ignition Sources Output Data for Colorado River in Utah Conservation Planning for the Colorado River in Utah - Access to the Site for Relative Cost of Restoration Model Conservation Planning for the Colorado River in Utah - Distance to Permanent Water for Rocky Fringe Snakes Model Conservation Planning for the Colorado River in Utah - Presence of Still Water Plus 20 m for Riparian Understory Model Conservation Planning for the Colorado River in Utah - Bottomland Boundary of the Colorado River Divided at Homogeneous River Reaches Data-Driven Drought Prediction Project Model Inputs for Upper and Lower Colorado Portions of the National Hydrologic Geo-Spatial Fabric version 1.1 and Select U.S. Geological Survey Streamgage Basins: Daily Climate Metrics Derived from GridMET, 1980 - 2020 Data-Driven Drought Prediction Project Model Inputs for Upper and Lower Colorado Portion of the National Hydrologic Geo-Spatial Fabric version 1.1 and Select U.S. Geological Survey Streamgage Basins: Daily Climate Metrics Derived from NLDAS2, 1980 - 2020