Skip to main content
Advanced Search

Filters: Tags: Upper Colorado River Basin (X) > partyWithName: U.S. Geological Survey (X)

37 results (26ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Our objective was to model specific minimum flow (mean of the annual minimum flows divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between specific minimum flow on gaged streams (115 gages) and environmental variables. We then projected...
thumbnail
Our objective was to model specific mean daily flow (mean daily flow divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between specific mean daily flow on gaged streams (115 gages) and environmental variables. We then projected specific mean...
thumbnail
Our objective was to model the risk of becoming intermittent under drier climate conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a conditional inference modeling approach to model the relation between intermittency status on gaged streams (115 gages) and selected mean and minimum flow metrics. We then projected intermittency status and if a stream...
thumbnail
This generalized geology dataset was developed as input to a total dissolved solids Spatially Referenced Regressions on Watershed Attributes (SPARROW) model for the Upper Colorado River Basin (UCRB; Kenney and others, 2009) and for a more recent update to that model. The largest source of naturally generated dissolved solids in streams of the UCRB is the rocks underlying stream basins, particularly rocks high in dissolvable minerals. For the purposes of modeling, the scale of the geologic dataset optimally should be similar to the scale of the stream-catchment network used in the model but simplified to reduce the number of geologic units represented in the data. This dataset was developed to meet both scale and...
thumbnail
Our objective was to model 7-day minimum flow (mean of the annual minimums of a 7-day moving average for each year [cubic feet per second]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between 7-day minimum flow on gaged streams (115 gages) and environmental variables. We then projected 7-day minimum...
thumbnail
This USGS Data Release represents Soil-Water Balance (SWB) groundwater recharge modeling results for the Upper Colorado River Basin (UCRB). The data release was produced in compliance with 'open data' requirements as a way to make the scientific products associated with USGS research efforts and publications available to the public. There are 4 separate datasets associated with this Data Release: 1. SWB model results from simulations run using observed climate data, summarized by water year from 1951 through 2010 2. SWB model results from simulations run using projected climate data, summarized by month and UCRB sub-basin from 1950 through 2099 3. SWB model results from simulations run using projected climate data,...
thumbnail
This USGS Data Release represents Soil-Water Balance (SWB) groundwater recharge modeling results for the Upper Colorado River Basin (UCRB). The data release was produced in compliance with 'open data' requirements as a way to make the scientific products associated with USGS research efforts and publications available to the public. This dataset comprises SWB model results from runs using projected climate data, summarized by water year, and there are 4 separate datafiles associated with this Data Release: 1. SWB model results for actual evapotranspiration (AET), summarized by water year from 1951 through 2099 2. SWB model results for potential evapotranspiration (PET), summarized by water year from 1951 through...
thumbnail
Stream flow in the Colorado River and Dolores River corridors has been significantly modified by water management, and continued flow alteration is anticipated in future decades with projected increases in human water demand. Bottomland vegetation has been altered as well, with invasion of non-native species, increases in wildfire and human disturbance, and currently, rapid shifts in riparian communities due to biological and mechanical tamarisk control efforts. In light of these conditions, land managers are in need of scientific information to support management of vegetation communities for values such as healthy populations of sensitive fish and wildlife species and human recreation. We propose to address these...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. awc_UCRB_Daymet_resolution.txt is an Esri ASCII grid representing the available water capacity (AWC) for the Upper Colorado River Basin. AWC (available water capacity) is the amount of water that a soil can hold, and is between a soil’s field capacity and the wilting point. In Soil-Water Balance (SWB) model recharge simulations, AWC is multiplied by root zone depth to define the maximum water capacity of a cell, and any soil-moisture...
thumbnail
Our objective was to model frequency of low-pulse events on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between frequency of low-pulse events on gaged streams (115 gages) and environmental variables. We then projected frequency of low-pulse events to ungaged reaches in the Upper Colorado River Basin...
thumbnail
This USGS Data Release represents Soil-Water Balance (SWB) groundwater recharge modeling results for the Upper Colorado River Basin (UCRB). The data release was produced in compliance with 'open data' requirements as a way to make the scientific products associated with USGS research efforts and publications available to the public. This dataset comprises SWB model results from runs using historical climate data, and there are 5 separate datafiles associated with this Data Release: 1. SWB model results for actual evapotranspiration (AET), summarized by water year from 1951 through 2010 2. SWB model results for potential evapotranspiration (PET), summarized by water year from 1951 through 2010 3. SWB model results...
thumbnail
Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. hsg_UCRB_Daymet_resolution.txt is an Esri ASCII grid representing the hydrologic soil group (HSG) for the Upper Colorado River Basin. The HSG for an area is determined by the least water-transmitting layer in the soil column. The Natural Resources Conservation Service (NRCS) classifies four HSGs from Group A (high infiltration capacity and low overland flow potential) to Group D (low infiltration capacity and high overland flow potential)....
thumbnail
These data are derived from the Basin Characterization Model (BCM) and used as input to a total dissolved solids SPARROW model for the Upper Colorado River Basin. The BCM mechanistically models the pathways of precipitation into evapotranspiration, infiltration into soils, runoff, or percolation below the root zone to recharge groundwater (Flint and others, 2013). The dataset is composed of twelve, 270-meter resolution raster layers representing mean total annual values for water years 1985 - 2012 of actual evapotranspiration (aet), climatic water deficit (cwd), excess water (exc), snowmelt (mlt), snowpack (pck), potential evapotranspiration (pet), precipitation (ppt), recharge (rch), runoff (run), sublimation (sbl),...
thumbnail
The Roaring Fork Watershed, located in the Rocky Mountains 150 miles west of Denver, Colorado, has seen rapid development and population growth in recent years. Water-quality data for the Roaring Fork Watershed have been gathered together so that interested citizens can evaluate historical changes and current quality of stream water and well water within the watershed.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This dataset represents the extent and spatial distribution of irrigated agricultural lands in the Upper Colorado River Basin for 2007-10. The boundaries in this dataset were modified from data developed by state and local agencies in Colorado, New Mexico, Utah, and Wyoming. The data contain information about the irrigation method used to water the fields and an estimate of the irrigation status of the field for the summer growing...
thumbnail
Our objective was to model intermittency (perennial, weakly intermittent, or strongly intermittent) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between intermittency on gaged streams (115 gages) and environmental variables. We then projected intermittency status to ungaged reaches in the Upper Colorado...


map background search result map search result map Roaring Fork Water-Quality Data Science-Based Riparian Restoration Planning on the Colorado and Dolores Rivers: A Decision Support Tool and Investigation of Habitat Complexity at Tributary Junctions Modeled Streamflow Metrics on Small, Ungaged Stream Reaches in the Upper Colorado River Basin: Data Predicted frequency of low-flow pulse events for small streams in the Upper Colorado River Basin under historic hydrologic conditions. Predicted intermittency of small streams in the Upper Colorado River Basin based on historic flow data Predicted 7-day minimum flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific mean daily flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific minimum flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted hydrology (intermittency) of a given stream reach under drier climate conditions in the Upper Colorado River Basin Soil-Water Balance Groundwater Recharge Model Results for the Upper Colorado River Basin UCRB SWB Model Results - Projected Climate Data - Water Years 1951-2099 UCRB SWB Model Results - Observed Climate Data - Water Years 1951-2010 Selected Basin Characterization Model Parameters for the Upper Colorado River Basin Generalized 1:500,000-scale geology of the Upper Colorado River Basin Available Water Capacity for the Upper Colorado River Basin in Daymet Climate Data resolution (awc_UCRB_Daymet_resolution.txt) Hydrologic Soil Group for the Upper Colorado River Basin in Daymet Climate Data resolution (hsg_UCRB_Daymet_resolution.txt) Geospatial Dataset of Agricultural Lands in the Upper Colorado River Basin, 2007 - 10 Roaring Fork Water-Quality Data Science-Based Riparian Restoration Planning on the Colorado and Dolores Rivers: A Decision Support Tool and Investigation of Habitat Complexity at Tributary Junctions Soil-Water Balance Groundwater Recharge Model Results for the Upper Colorado River Basin UCRB SWB Model Results - Projected Climate Data - Water Years 1951-2099 UCRB SWB Model Results - Observed Climate Data - Water Years 1951-2010 Geospatial Dataset of Agricultural Lands in the Upper Colorado River Basin, 2007 - 10 Predicted hydrology (intermittency) of a given stream reach under drier climate conditions in the Upper Colorado River Basin Selected Basin Characterization Model Parameters for the Upper Colorado River Basin Generalized 1:500,000-scale geology of the Upper Colorado River Basin Available Water Capacity for the Upper Colorado River Basin in Daymet Climate Data resolution (awc_UCRB_Daymet_resolution.txt) Hydrologic Soil Group for the Upper Colorado River Basin in Daymet Climate Data resolution (hsg_UCRB_Daymet_resolution.txt) Predicted frequency of low-flow pulse events for small streams in the Upper Colorado River Basin under historic hydrologic conditions. Predicted intermittency of small streams in the Upper Colorado River Basin based on historic flow data Predicted 7-day minimum flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific mean daily flow of small streams in the Upper Colorado River Basin based on historic flow data Predicted specific minimum flow of small streams in the Upper Colorado River Basin based on historic flow data Modeled Streamflow Metrics on Small, Ungaged Stream Reaches in the Upper Colorado River Basin: Data