Skip to main content
Advanced Search

Filters: Tags: WETLANDS (X) > Date Range: {"choice":"month"} (X) > Types: OGC WFS Layer (X)

7 results (39ms)   

Filters
Date Types (for Date Range)
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The Science Issue and Relevance: Coastal wetlands are some of the most productive and valuable habitats in the world. Louisiana contains 40% of the United States’ coastal wetlands, which provide critical habitat for waterfowl and fisheries, as well as many other benefits, such as storm surge protection for coastal communities. In terms of ecosystem services, biological resource production, and infrastructure investments, the value of Louisiana’s coastal wetlands exceeds $100 billion. Thus, stakeholders are gravely concerned about sea-level rise which is causing coastal marsh habitat to convert to open water and resulting in the highest rates of wetland loss in the world, with nearly 1.2 million acres lost since...
thumbnail
Recently intensifying drought conditions have caused increased stress to non-native tamarisk vegetation across riparian areas of the San Carlos Apache Tribe (hereafter Tribe) and the Upper Gila River watershed in Arizona and New Mexico. This also increases wildfire risk in the area, making the removal of tamarisk vegetation a primary restoration and climate adaptation objective for the Tribe. The research from this project can improve the Tribe’s capacity to map tamarisk and other riparian vegetation, in addition to monitoring the relative condition and water stress of the vegetation in a timely manner. Specifically, the project will help identify where tamarisk is on the reservation and inform restoration actions...
thumbnail
Many amphibian species are highly susceptible to changes in precipitation timing and volume because of their reliance on intermittently flooded surface water pools, which are primarily filled through snowmelt and precipitation runoff. ​With increasing evapotranspiration (i.e. transfer of water from land to the atmosphere) due to climate change, the timing and availability of water in key amphibian reproductive habitats will likely be altered. This project will assess the future risk to amphibian populations in the Midwest, identifying present and future richness hotspots and those wetland species and populations most at risk of habitat loss due to climate change. The research team will model landscape level changes...
thumbnail
Moloka‘i has great wetland restoration potential in Hawaiʻi, but most remaining sites are highly degraded. The future of several endangered waterbirds and insects relies on restoring coastal wetland habitat that is resilient under sea-level rise and coastal flooding. Currently, managers lack background data on Molokaʻi to prioritize sites for restoration. In this project, Researchers will develop a comprehensive dataset and create a prioritization plan for coastal wetland restoration. The team will work closely with project partners and stakeholders to develop a well-vetted plan to support endangered species and meeting community needs. Existing maps and spatial data about the Molokaʻi landscape will be compiled...
thumbnail
Climate adaptation planning provides a framework for Tribes to exercise sovereignty over wild resources important for the subsistence way of life and economic and cultural activities that are being impacted by climate change. The climate adaptation planning process includes identifying key resources that are currently being impacted by climate change, or that may be impacted in the future, as well as identifying practical and strategic steps that can be taken to mitigate or adapt to the changing circumstances. Through a partnership among the Ketchikan Indian Community, the Metlakatla Indian Community, OceansAlaska, and the University of Alaska Fairbanks this project will support Tribal- and Alaska Native-led...
thumbnail
Steep, mountainous watersheds, dramatic climate gradients, and tight links between the land and sea are common features of both the Pacific Islands and Southeast Alaska. In these "ridge-to-reef" and “icefield-to-ocean" ecosystems, environmental changes that occur at higher elevations have downstream impacts on the waters below. Today, these two ecosystems are undergoing changes in climate that are significantly impacting the terrestrial, freshwater, and coastal ecosystems that communities rely on for food, water, recreation, and tourism. For example, changing weather patterns are leading to more frequent and severe extreme storms, atmospheric rivers, droughts, and heat waves. Communities in both regions have deep...
thumbnail
In 2020, Governor Edwards of Louisiana issued two executive orders: establishing the Climate Initiatives Task Force to develop the state’s first ever Climate Action Plan to reach net zero greenhouse gas emissions by 2050 and to enhance coastal resilience in the state. Louisiana’s coastal wetlands and natural lands are of vital importance not just for hurricane protection, health and wellbeing, and natural resources, but also for carbon sequestration (i.e. capturing and storage of carbon from the atmosphere). Enhancing natural carbon sinks (i.e. ecosystem that stores more carbon than it releases) to offset greenhouse gas emissions is a critical step for Louisiana to achieve its net zero goals. Coastal wetlands have...


    map background search result map search result map Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat A Prioritization Plan for Coastal Wetland Restoration on Moloka‘i Developing a Decision Support Tool to Inform Louisiana’s Climate Change Adaptation Strategy Building Tribal Capacity to Adapt and Respond to Climate Change in Southern Southeast Alaska Mapping Effects of Wetland Change on Amphibians in the Upper Midwest Understanding Ridge-to-Reef and Icefield-to-Ocean Ecosystem Function in a Changing Climate Mapping Riparian Vegetation Response to Climate Change on the San Carlos Apache Reservation and Upper Gila River Watershed to Inform Restoration Priorities: 1935 to Present (Phase 2) Mapping Riparian Vegetation Response to Climate Change on the San Carlos Apache Reservation and Upper Gila River Watershed to Inform Restoration Priorities: 1935 to Present (Phase 2) Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat Developing a Decision Support Tool to Inform Louisiana’s Climate Change Adaptation Strategy Building Tribal Capacity to Adapt and Respond to Climate Change in Southern Southeast Alaska Mapping Effects of Wetland Change on Amphibians in the Upper Midwest Understanding Ridge-to-Reef and Icefield-to-Ocean Ecosystem Function in a Changing Climate