Skip to main content
Advanced Search

Filters: Tags: benthic (X) > Date Range: {"choice":"year"} (X)

3 results (53ms)   

Filters
Date Types (for Date Range)
Extensions (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This project evaluates the effects of global climate change and sea level rise on estuarine intertidal habitat in the San Francisco Bay and the Pacific Flyway migratory waterbirds that rely on this habitat. Phase 2 of this project is a continuation of work to evaluate the effects of global climate change and sea level rise (SLR) on intertidal shoals in the San Francisco Bay Estuary and the migratory waterbirds that rely on this critically important resource in the Pacific Flyway. The primary objectives are to: 1) use downscaled global climate change models to translate SLR and climate scenarios into habitat quantity predictions through Delft3D and Dflow-FM (unstructured grid) geomorphic modeling; 2) model the response...
thumbnail
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to a derivation of sediments that have been transported to, and deposited in, a basal bowl-shaped depression since the last glacial maximum. Ninety-two piston, vibra-, and gravity cores with a maximum length of 8.2...
This data product was created as part of the Northwest Atlantic Marine Ecoregional Assessment. The Nature Conservancy developed this science-based ecoregional assessment for the Northwest Atlantic Marine region (Bay of Fundy to Cape Hatteras, North Carolina). This assessment synthesizes information on oceanography, chemistry, geology, biology, and social science to inform decisions about coastal and marine ecosystems. By integrating this information at a regional level, the Conservancy is able to provide both a greater understanding of the interrelated biological diversity of the marine ecoregion, and a clearer picture of the current condition of its natural areas and the challenges to their continued persistence....


    map background search result map search result map Foraminifera biostratigraphy of sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA Foraminifera biostratigraphy of sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA