Skip to main content
Advanced Search

Filters: Tags: coastal wetlands (X)

141 results (44ms)   

View Results as: JSON ATOM CSV
thumbnail
Vegetation and elevation survey data were collected in 4-square-meter quadrats via Real-Time Kinematic GPS from September 9, 2018 to April 17, 2019 on Dauphin Island, AL. Vegetation data included total percent herbaceous cover, percent cover by plant species, and mean height of vegetation within the quadrat. The percent cover by species was used to determine the dominant species for the plot.
thumbnail
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
thumbnail
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring (SWAMP) program. The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
thumbnail
SLAMM-View is a web browser-based application that provides tools for improved understanding of results from research projects that employ the Sea Level Affecting Marshes Model (SLAMM). Version 2.0 of SLAMM-View was designed for a user-friendly, workflow-based approach to assess impacts of sea-level rise (SLR) on coastal areas with both visualization and analysis functionality. SLAMM-View provides simultaneous comparison between both current and future conditions out to the year 2100, and among different SLR scenarios (e.g., 0.4 meter vs. 1 meter), using interactive maps and tabular reporting capabilities. To date, SLAMM-View provides access to SLAMM simulation results for the entire coastlines of 5 states, and...
thumbnail
The Biscayne National Park (BISC) vegetation map was created by Pablo L. Ruiz, Patricia A. Houle, and Michael S. Ross of Florida International University (Cooperative agreement H500 06 5040 Task agreement J2117062272) with the National Park Service South Florida / Caribbean Network conducting the accuracy assessment and assembling the final joint report and deliverables. Biscayne National Park�s 3,096 hectares of terrestrial vegetation, including the wetlands along the western shore of Biscayne Bay, mangrove islands in the bay, and larger islands that parallel the mainland, were mapped with a vector-based approach using photo-interpretation of Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research...
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
The graphs presented here quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period by 10-digit Hydrologic Unit Code (HUC10) in the Gulf of Mexico. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
Coastal wetlands provide many valuable benefits to people and wildlife, including critical habitat, improved water quality, reduced flooding impacts, and protected coastlines. However, in the 21st century, accelerated sea-level rise and coastal development are expected to greatly alter coastal landscapes across the globe. The future of coastal wetlands is uncertain, challenging coastal environmental managers to develop conservation strategies that will increase the resilience of these valuable ecosystems to change and preserve the benefits they provide. One strategy for preparing for the effects of sea-level rise is to ensure that there is space available for coastal wetlands to migrate inland. In a recent study,...
thumbnail
This product provides spatial variations in wave thrust along shorelines in Massachusetts and Rhode Island. Natural features of relevance along the State coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the distinct features of each marsh system. Waves under different climatological wind forcing conditions were simulated using the coupled ADCIRC/SWAN model system. The estuarine and bay areas are resolved with horizontal...
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe (Millennium Ecosystem Assessment, 2005; Stocker and others, 2013). More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast (Field and others, 1991). In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration (Barbier and others, 2011; Engle, 2011). Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape....
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
thumbnail
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...


map background search result map search result map Biscayne National Park Vegetation Mapping Project - Spatial Vegetation Data Litter quality Primary production across a coastal wetland landscape in Louisiana, U.S.A. (2012-2014) Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Primary production across a coastal wetland landscape in Louisiana, U.S.A. environmental data (2012-2014) Riverine Sand Mining/Scofield Island Restoration (BA-40): 2014 habitat classification (ver. 1.1, August 2021) Louisiana Barrier Island Comprehensive Monitoring Program – 2008-2016 habitat change, Chandeleur Islands Region An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2014 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Atlantic Coast - 2015 Barrier island vegetation and elevation survey, Dauphin Island, AL, 2018–19 L5_1992_GOM_Fractional_Land_FAV_SAV_Water L5_2001_GOM_Fractional_Land_FAV_SAV_Water L5_2008_GOM_Fractional_Land_FAV_SAV_Water_post_Hurricanes_Gustav_Ike Gulf of Mexico Land Area Change in Wetland Possible Zone by Hydrologic Unit Code (HUC) Graphs Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Pass Chaland to Grand Bayou Pass Barrier Shoreline Restoration (BA-35): 2016 habitat classification Riverine Sand Mining/Scofield Island Restoration (BA-40): 2014 habitat classification (ver. 1.1, August 2021) Barrier island vegetation and elevation survey, Dauphin Island, AL, 2018–19 Pass Chaland to Grand Bayou Pass Barrier Shoreline Restoration (BA-35): 2016 habitat classification Biscayne National Park Vegetation Mapping Project - Spatial Vegetation Data Louisiana Barrier Island Comprehensive Monitoring Program – 2008-2016 habitat change, Chandeleur Islands Region Primary production across a coastal wetland landscape in Louisiana, U.S.A. (2012-2014) Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Primary production across a coastal wetland landscape in Louisiana, U.S.A. environmental data (2012-2014) Litter quality Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Gulf of Mexico Land Area Change in Wetland Possible Zone by Hydrologic Unit Code (HUC) Graphs L5_1992_GOM_Fractional_Land_FAV_SAV_Water L5_2001_GOM_Fractional_Land_FAV_SAV_Water L5_2008_GOM_Fractional_Land_FAV_SAV_Water_post_Hurricanes_Gustav_Ike An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the Atlantic Coast - 2015 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2014