Skip to main content
Advanced Search

Filters: Tags: integrated hydrologic-flow modeling (X)

4 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
An integrated hydrologic-flow model, called the Central Platte Integrated Hydrologic Model, was constructed using the MODFLOW-One-Water Hydrologic Model code with the Newton solver. This code integrates climate, landscape, surface water, and groundwater-flow processes in a fully coupled approach. This study provided the Central Platte Natural Resources District (CPNRD) with an advanced numerical modeling tool to assist with the update of their Groundwater Management Plan by providing them information on modeled future GW levels under different climate scenarios and management practices. This tool will allow the CPNRD to evaluate other scenarios as management changes in the future. A predevelopment model simulated...
thumbnail
The integrated hydrologic-flow model, called the Osage Nation Integrated Hydrologic Model (ONIHM) was developed to assess water availability in the Osage Nation. This model was developed using the MODFLOW-One Water Hydrologic Model (MF-OWHM) code. The ONIHM was discretized into an orthogonal grid of 276 rows and 289 columns, and each grid cell measured 1,312.34 feet (ft) per side, with eight variably thick vertical layers that represented the alluvial and bedrock aquifers within the study area, including the Vamoosa-Ada aquifer and other minor bedrock aquifers deposited during the Pennsylvanian Period. The ONIHM was delineated into 128 water-balance subregions based on surface watersheds, land cover, and water supply...
thumbnail
The Mississippi Alluvial Plain (MAP) is one of the most important agricultural regions in the United States and underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. The MAP region supports a multibillion-dollar agricultural industry. The MAP is part of the Mississippi Embayment with several water-bearing units that make up the Mississippi Embayment Regional Aquifer System (MERAS). These water bearing units include the Mississippi River Valley Alluvial aquifer, Claiborne aquifers and Wilcox aquifers. In northeastern Arkansas, the Cache area has been designated as a critical groundwater areas because of decades of groundwater declines that resulted from past and...
thumbnail
The Mississippi Alluvial Plain (MAP) is one of the most important agricultural regions in the United States and underlies about 32,000 square miles of Missouri, Kentucky, Tennessee, Mississippi, Louisiana, and Arkansas. The MAP region supports a multibillion-dollar agricultural industry. The MAP is part of the Mississippi Embayment with several water-bearing units that make up the Mississippi Embayment Regional Aquifer System (MERAS). These water bearing units include the Mississippi River Valley Alluvial aquifer, Claiborne aquifers and Wilcox aquifers. Two areas in northeastern Arkansas, the Cache and Grand Prairie areas have been designated as critical groundwater areas because of decades of groundwater declines...


    map background search result map search result map MODFLOW-One Water Hydrologic Model integrated hydrologic-flow model used to evaluate water availability in the Osage Nation MODFLOW-One-Water model used to support the Central Platte Natural Resources District Groundwater Management Plan Simulations of the groundwater-flow system in the Cache and Grand Prairie Critical Groundwater Areas, northeastern Arkansas Cache groundwater-flow model Cache groundwater-flow model MODFLOW-One Water Hydrologic Model integrated hydrologic-flow model used to evaluate water availability in the Osage Nation Simulations of the groundwater-flow system in the Cache and Grand Prairie Critical Groundwater Areas, northeastern Arkansas MODFLOW-One-Water model used to support the Central Platte Natural Resources District Groundwater Management Plan