Skip to main content
Advanced Search

Filters: Tags: land surface phenology (X)

2 results (43ms)   

View Results as: JSON ATOM CSV
We enhanced the agro-hydrologic VegET model to include snow accumulation and melt processes and the separation of runoff into surface runoff and deep drainage. Driven by global weather datasets and parameterized by land surface phenology (LSP), the enhanced VegET model was implemented in the cloud to simulate daily soil moisture (SM), actual evapotranspiration (ETa), and runoff (R) for the conterminous United States (CONUS) and the Greater Horn of Africa (GHA). Evaluation of the VegET model with independent data showed satisfactory performance, capturing the temporal variability of SM (Pearson correlation r: 0.22–0.97), snowpack (r: 0.86–0.88), ETa (r: 0.41–0.97), and spatial variability of R (r: 0.81–0.90). Absolute...
The agro-hydrologic VegET (VegetationEvapotranspiration) model uses a water balance approach to simulate daily soil moisture (SM), actual evapotranspiration (ETa), and runoff (R). We enhanced the model to include snow accumulation and melt processes along with the separation of runoff into surface runoff and deep drainage and implemented the code using cloud technology. This publication is providing the supporting data for the updated methods and provides evaluation results for the United States and the Greater Horn of Africa.