Skip to main content
Advanced Search

Filters: Tags: multibeam sonar (X) > partyWithName: Jenny L Hanson (X)

31 results (131ms)   

View Results as: JSON ATOM CSV
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the main and side channels (where accessible) of the Dresden reach June 4 – 28, 2018.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. These information needs were highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment...
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). Backscatter is the acoustic reflectivity, which is the measure of energy obtained from the echo intensity, and can provide an indication about the nature of the river bottom and its physical character. Image analysis and classification of backscatter, with the combined datasets of bathymetry (and its derivatives) and ground truthing, can predict surficial substrate, or sediment type. For habitat analysis, these datasets were desired by the NPS to help inform and mitigate...
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the West Pit of Hanson Pits (where accessible) of the Marseilles reach June 25-26, 2018.
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the river bed. The acoustic data were collected from the main and side channels (where accessible) of the Marseilles reach June 26 – August 23, 2017, and May 22, 2018.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. A terrestrial lidar unit was used to collect shoreline elevation points. These datasets were highly desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. This information is highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment and Natural...
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. These datasets were desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the main and side channels (where accessible) of the Starved Rock reach August 24 – September 13, 2017, and May 23, 2018.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. Contours are an outline or boundary of specified depth intervals. These datasets were desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. A terrestrial lidar unit was used to collect shoreline elevation points. These datasets were desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. Contours are an outline or boundary of specified depth intervals. These datasets were desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. This information is highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment and Natural...
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). The dataset is a collection of still-shot images to be used as ground-truth data for geologic substrate. The still-images (jpeg format) were captured from underwater video using an Aqua-Vu system. For statistical analysis, the videos were sampled at random point locations. A short video captured the surficial geologic sediment type at each location. This collection of images directly corresponds with the geospatial shapefile containing sample location coordinates, a general...
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the Easst Pit of Hanson Pits (where accessible) of the Marseilles reach June 27, 2018.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). This dataset contains predicted geologic substrate information that was interpreted from combined sonar datasets. The shapefile contains a general description of interpreted surficial bottom type with its associated class code in the attribute table. Benthic substrate maps provide important physical characteristics that can be used in habitat modeling to guide management planning of restoration and conservation efforts.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. This information is highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment and Natural...
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic characteristics of macro habitats in the Illinois River. Multibeam echosounders collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the East Pit of the Hanson Pits (where accessible) of the Marseilles reach June 27, 2018, and August 25, 2020.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). High-resolution bathymetry data was surveyed using a multibeam sonar. The depth and characteristics of the riverbed are important parameters of habitat for benthic (bottom-dwelling) organisms, and are a fundamental parameter for riverine ecosystems. These datasets were desired by the NPS to help inform and mitigate potential impacts to mussels or benthic habitat.
thumbnail
The U.S. Geological Survey (USGS) collected hydroacoustic data of the St. Croix River adjacent to the Osceola (WI) boat ramp for hydrographic and benthic mapping prior to the reconstruction project implemented by the National Park Service (NPS). This dataset contains reference locations that were obtained while collecting ground-truth information for geologic substrate. For statistical analysis, the locations were selected using random point sampling. The shapefile contains sample location coordinates, a general description of interpreted surficial sediment type, and an indication of mussel presence/absence in the attribute table. These geospatial locations directly correspond to the "still-images" dataset.


map background search result map search result map Illinois River, Dresden, Sidescan Image Mosaic June 2018 Illinois River, Hanson Pits,East Pit, Sidescan Image Mosaic, 2018 Illinois River, Hanson Pits,West Pit, Sidescan Image Mosaic, 2018 Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 Illinois River, Starved Rock, Sidescan Image Mosaic, 2017-2018 SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Topobathy Elevation Data SACN Osceola Boat Landing: 2019 Backscatter (Acoustic Reflectivity) Data SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Bathymetry Elevation Data SACN Osceola Boat Landing: 2019 River Bed Observations, Still Images SACN Osceola Boat Landing: 2019 River Bed Observations SACN Osceola Boat Landing: 2019 Topobathy Depth Contours (vector) SACN Osceola Boat Landing: 2019 Topobathy Elevation Contours (vector) SACN Osceola Boat Landing: 2019 Substrate Data SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Bathymetry Depth Hillshade SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Topobathy Elevation Hillshade Illinois River, Hanson Pits, East Pit, Sidescan Image Mosaic, 2018-2020 Mississippi National River and Recreation Area Bathymetry, Mississippi River, 2019-2021 Mississippi National River and Recreation Area - Mississippi River Pools 2-3, Low Resolution (5-meter) Bathymetry, 2019 Mississippi National River and Recreation Area, Mississippi River Sidescan Image Mosaics, 2019-2021 St. Croix National Scenic Riverway, ADCP Flow Diffusion of the St. Croix River near Hudson, WI, 20181004 SACN Osceola Boat Landing: 2019 River Bed Observations, Still Images SACN Osceola Boat Landing: 2019 River Bed Observations SACN Osceola Boat Landing: 2019 Substrate Data SACN Osceola Boat Landing: 2019 Topobathy Depth Contours (vector) SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Bathymetry Elevation Data SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Bathymetry Depth Hillshade SACN Osceola Boat Landing: 2019 Topobathy Elevation Contours (vector) SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Topobathy Elevation Data SACN Osceola Boat Landing: 2019 Digital Elevation Model (DEM), Topobathy Elevation Hillshade Illinois River, Hanson Pits,East Pit, Sidescan Image Mosaic, 2018 Illinois River, Hanson Pits, East Pit, Sidescan Image Mosaic, 2018-2020 Illinois River, Starved Rock, Sidescan Image Mosaic, 2017-2018 Illinois River, Dresden, Sidescan Image Mosaic June 2018 Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 Mississippi National River and Recreation Area - Mississippi River Pools 2-3, Low Resolution (5-meter) Bathymetry, 2019 Mississippi National River and Recreation Area Bathymetry, Mississippi River, 2019-2021 Mississippi National River and Recreation Area, Mississippi River Sidescan Image Mosaics, 2019-2021