Skip to main content
Advanced Search

Filters: Tags: north america (X) > Date Range: {"choice":"year"} (X) > Types: Shapefile (X)

35 results (13ms)   

View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Baseline, CMGP, California, CenCal, Central California, All tags...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 5, which is one of 18 similarly sized segments of the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a glaciated terrain that is topographically and texturally diverse. Quadrangle 5 includes the shallow, rippled, coarse-grained sandy crest and upper eastern and western flanks of southern Stellwagen Bank, its fine-grained sandy...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, Boston, Massachusetts, CMGP, Coastal and Marine Geology Program, Esri shapefile, All tags...
thumbnail
An extreme flood in 2016 caused widespread culvert blockages and road failures across northern Wisconsin, including extensive damage along steep tributaries and ravines in the Marengo River watershed. Along with the flooding, there were fluvial erosion hazards (FEH) associated with a large amount of erosion in headwater areas. Of special concern were FEHs associated with gullying, loss of wetland storage, and valley-side mass wasting. In 2020, a pilot study was begun to map and classify ephemeral and perennial streams and wetlands in terms of their susceptibility to fluvial erosion hazards. This study combines rapid geomorphic field assessments of river corridor erosion and coupled sediment and debris delivery with...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
This shapefile represents the watersheds present within the Crown of the Continent Ecosystem (CCE) boundary.(Note: a different CCE boundary layer was used at the time of creation, so the area amounts within the CCE may not be accurate)This dataset was developed by the Crown Managers Partnership, as part of a transboundary collaborative management initiative for the Crown of the Continent Ecosystem, based on commonly identified management priorities that are relevant at the landscape scale. The CMP is collaborative group of land managers, scientists, and stakeholder in the CCE. For more information on the CMP and its collaborators, programs, and projects please visit: http://crownmanagers.org/
thumbnail
Global climate change is leading to large-scale shifts in species’ range limits. For example, rising winter temperatures are shifting the abundance and distributions of tropical, cold sensitive plant species towards higher latitudes. Coastal wetlands provide a prime example of such shifts, with tropical mangrove forests expanding into temperate salt marshes as winter warming alleviates past geographic limits set by cold intolerance. These rapid changes are dynamic and challenging to monitor, and uncertainty remains regarding the extent of mangrove expansion near poleward range limits. Here, we synthesized existing datasets and expert knowledge to assess the current (i.e., 2021) distribution of mangroves near dynamic...
thumbnail
In coastal areas of the United States, where water and land interface in complex and dynamic ways, it is common to find concentrated residential and commercial development. These coastal areas often contain various landholdings managed by Federal, State, and local municipal authorities for public recreation and conservation. These areas are frequently subjected to a range of natural hazards, which include flooding and coastal erosion. In response, the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data to calculate rates of shoreline change along the conterminous coast of the United States, and select coastlines of Alaska and Hawaii, as part of the Coastal Change Hazards priority...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Baseline, CMGP, California, CenCal, Central California, All tags...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 5, which is one of 18 similarly sized segments of the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a glaciated terrain that is topographically and texturally diverse. Quadrangle 5 includes the shallow, rippled, coarse-grained sandy crest and upper eastern and western flanks of southern Stellwagen Bank, its fine-grained sandy...


map background search result map search result map Crown of the Continent Watershed Mangrove distribution in the southeastern United States in 2021 Interpretation of the seabed geologic substrates in quadrangle 5 of the Stellwagen Bank National Marine Sanctuary region offshore of Boston, Massachusetts based on data collected by the U.S. Geological Survey from 1993-2019 Portion of the 1-meter (m) contours in quadrangle 5 of the Stellwagen Bank Survey Area offshore of Boston, Massachusetts based on bathymetry data collected by the U.S. Geological Survey from 1994-1996 Long-term shoreline change rates for the Virginia coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Baseline for the Virginia coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Fluvial Erosion Hazard Geospatial Network from the Marengo River Watershed, Ashland County, Wisconsin Short-term shoreline change rate transects for the South Carolina coastal region using the Digital Shoreline Analysis System version 5.1 Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for the coastal region of South Carolina generated to calculate long-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baseline for the South Carolina coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Shorelines of the Central California coastal region (1852-2016) used in shoreline change analysis Intersects for the Northern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Shorelines of the Northern California coastal region (1854-2016) used in shoreline change analysis Baseline for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Long-term shoreline change rates for the Southern California coastal region using the Digital Shoreline Analysis System version 5.0 Long and short-term shoreline intersect points for the western coast of North Carolina (NCwest), calculated using the Digital Shoreline Analysis System version 5.1 Long and short-term shoreline intersect points for the northern coast of North Carolina (NCnorth), calculated using the Digital Shoreline Analysis System version 5.1 Portion of the 1-meter (m) contours in quadrangle 5 of the Stellwagen Bank Survey Area offshore of Boston, Massachusetts based on bathymetry data collected by the U.S. Geological Survey from 1994-1996 Interpretation of the seabed geologic substrates in quadrangle 5 of the Stellwagen Bank National Marine Sanctuary region offshore of Boston, Massachusetts based on data collected by the U.S. Geological Survey from 1993-2019 Fluvial Erosion Hazard Geospatial Network from the Marengo River Watershed, Ashland County, Wisconsin Long and short-term shoreline intersect points for the northern coast of North Carolina (NCnorth), calculated using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term shoreline change rates for the Virginia coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Baseline for the Virginia coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Short-term shoreline change rate transects for the South Carolina coastal region using the Digital Shoreline Analysis System version 5.1 Intersects for the coastal region of South Carolina generated to calculate long-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Baseline for the South Carolina coastal region, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for the Northern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Shorelines of the Northern California coastal region (1854-2016) used in shoreline change analysis Intersects for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Long-term shoreline change rates for the Southern California coastal region using the Digital Shoreline Analysis System version 5.0 Baseline for the Southern California coastal region generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Shorelines of the Central California coastal region (1852-2016) used in shoreline change analysis Crown of the Continent Watershed Mangrove distribution in the southeastern United States in 2021