Skip to main content
Advanced Search

Filters: Tags: north carolina (X) > Date Range: {"choice":"year"} (X) > Types: OGC WMS Layer (X)

57 results (17ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data set represents the extent, approximate location and type of wetlands and deepwater habitats in the United States and its Territories. These data delineate the areal extent of wetlands and surface waters as defined by Cowardin et al. (1979). Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and near shore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Alabama, Alabama, Alaska, Arizona, All tags...
thumbnail
This dataset represents results from this study attributed to the NHDPlus V2 catchments. Changes in climate occurring throughout the Mississippi River Basin are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing changing thermal properties and flow regimes. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project provides a suite of climate metrics that have been found to be relevant to the distribution and population structure of aquatic organisms in freshwater stream networks. These results provide natural resource managers, decision-makers,...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Alabama, Arkansas, Colorado, Complete, All tags...
thumbnail
This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the U.S. Geological Survey (USGS). It is an update to the original GAGES, which was published as a Data Paper on the journal Ecology's website (Falcone and others, 2010b) in 2010. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009, and whose watersheds lie within the United States, including Alaska, Hawaii, and Puerto Rico. Reference gages were identified based on indicators that they...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Alabama, Alaska, All 50 states, Arizona, Arkansas, All tags...
thumbnail
This data release contains environmental and quality control results for chemical, biological, and physical sampling of water and bed sediment from Albemarle Sound and associated tributaries between 2012 and 2014 referenced in USGS OFR 2016-1171. Appendix 1 contains all quality control results to characterize the bias and variability of sampling, handling, and analysis of water, phytoplankton, and bed sediment samples. Appendix 2 contains all the chemical, biological, and physical results for water samples collected in July and August of 2012. Appendix 3 contains all the chemical, biological, and physical results for water samples collected from March 2013 to February 2014. Data are included for discrete samples...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
Background The North Atlantic Coastal Plain (NACP) covers a land area of approximately 34,000 mi 2 along the eastern seaboard of the United States from Long Island, N.Y., southward to the northern portion of North Carolina. This area is underlain by a thick wedge of sedimentary deposits that form a complex groundwater system in which the sands and gravels function as confined aquifers, and the silts and clays function as confining units. These confined aquifers of the NACP constitute a major source of water for public and domestic supply for the nearly 27 million people living in the region, as well as being important source of water for industrial and agricultural purposes. Increases in population and changes...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Cooperative Water Program, Delaware, Focused Assessments, Focused Assessments, Focused Assessments, All tags...
thumbnail
This pilot mapping project, produced by the U.S. Fish and Wildlife Service (Service) in collaboration with staff from the North Carolina Wildlife Resources Commission (NCWRC), provides general information on the potential risk to species of concern and sensitive habitats from proposed wind energy projects in the coastal plain of North Carolina. The map is intended to assist wind energy developers with appropriate siting of proposed wind energy projects that are subject to the Service’s 2012 Land-Based Wind Energy Guidelines, particularly during the Tier 1(Preliminary Site Evaluation) and Tier 2 (Site Characterization) stages of site evaluation. It is intended to be used as a general guidance, and should not be used...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
This dataset represents results from this study attributed to the NHDPlus V2 catchments. Changes in climate occurring throughout the Mississippi River Basin are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing changing thermal properties and flow regimes. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project provides a suite of climate metrics that have been found to be relevant to the distribution and population structure of aquatic organisms in freshwater stream networks. These results provide natural resource managers, decision-makers,...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Alabama, Arkansas, Colorado, Complete, All tags...
thumbnail
As part of the Coastal Carolinas Focus Area Study of the U.S. Geological Survey National Water Census Program, the Soil and Water Assessment Tool (SWAT) was used to develop models for the Pee Dee River Basin, North Carolina and South Carolina, to simulate future streamflow and irrigation demand based on land use, climate, and water demand projections. SWAT is a basin-scale, process-based watershed model with the capability of simulating water-management scenarios. Model basins were divided into approximately two-square mile subbasins and subsequently divided into smaller, discrete hydrologic response units based on land use, slope, and soil type. The calibration period for the historic model was 2000 to 2014. The...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Alexander, Alleghany, Anson, Ashe, Bladen, All tags...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes one new mean high water (MHW) shoreline extracted from lidar data collected in 2017 for the entire coastal region of North Carolina which is divided into four subregions: northern North Carolina...
thumbnail
The Cape Fear River Basin was added to a nationwide program called The Sustainable Rivers Program (SRP) in 2016. SRP is a joint program between The Nature Conservancy (TNC) and the Army Corps of Engineers (Corps) to improve the health of rivers by analyzing how the Corps operates their infrastructure, such as the release of water out of dams. The SRP attempts to analyze the effects from dams and use reservoir operations to enhance and manage downstream (and sometimes in lake) ecosystems. Once a river is in the program, it goes through a formal process to consider e-flows for a basin. This includes gathering technical stakeholders to discuss the issues and potential solutions in the basin, compiling a literature...
thumbnail
In summer 2018, the U.S. Geological Survey partnered with the U.S Department of Energy and the Bureau of Ocean Energy Management to conduct the Mid-Atlantic Resources Imaging Experiment (MATRIX) as part of the U.S. Geological Survey Gas Hydrates Project. The field program objectives were to acquire high-resolution 2-dimensional multichannel seismic-reflection and split-beam echosounder data along the U.S Atlantic margin between North Carolina and New Jersey to determine the distribution of methane gas hydrates in below-sea floor sediments and investigate potential connections between gas hydrate dynamics and sea floor methane seepage. MATRIX field work was carried out between August 8 and August 28, 2018 on the...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, BOEM, Bureau of Ocean Energy Management, CMHRP, Cape Hatteras, All tags...
thumbnail
This dataset represents results from this study attributed to the NHDPlus V2 catchments. Changes in climate occurring throughout the Mississippi River Basin are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing changing thermal properties and flow regimes. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project provides a suite of climate metrics that have been found to be relevant to the distribution and population structure of aquatic organisms in freshwater stream networks. These results provide natural resource managers, decision-makers,...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Alabama, Alabama, Arkansas, Arkansas, All tags...


map background search result map search result map GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow Groundwater Availability of the Northern Atlantic Coastal Plain North Carolina 2015 State Wildlife Action Plan Species of Greatest Conservation Need North Carolina 2005 State Wildlife Action Plan Species of Greatest Conservation Need Associated data for Water Quality and Sediment Quality in the Albemarle Sound, North Carolina, 2012–14 Ports of the United States National Wetlands Inventory - Wetlands Data: Current and future CCCma CGCM3.1 climate data for NHD v2 catchments within the Mississippi River Basin Data: Current and future CNRM CM3 climate data for NHD v2 catchments within the Mississippi River Basin Data: Current and future MPI ECHAM5 climate data for NHD v2 catchments within the Mississippi River Basin Multichannel Seismic-Reflection and Navigation Data Collected Using Sercel GI Guns and Geometrics GeoEel Digital Streamers During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA Soil and Water Assessment Tool (SWAT) models for the Pee Dee River Basin used to simulate future streamflow and irrigation demand based on climate and urban growth projections Autonomous Underwater Vehicle Water-Quality Measurements in the Cape Fear River, multiple locations, North Carolina, 2020-2021 Eastern Environmental Wind Project Risk Polygons Long and short-term shoreline intersect points for the western coast of North Carolina (NCwest), calculated using the Digital Shoreline Analysis System version 5.1 2017 lidar-derived mean high water shoreline for the coast of North Carolina from Cape Hatteras to Cape Lookout (NCcentral) Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral) 2017 lidar-derived mean high water shoreline for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Long and short-term shoreline change rate transects for the northern North Carolina coastal region (NCnorth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Long and short-term shoreline change rate transects for the northern North Carolina coastal region (NCnorth), calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 2017 lidar-derived mean high water shoreline for the coast of North Carolina from Cape Hatteras to Cape Lookout (NCcentral) Baseline for the North Carolina coastal region from Cape Hatteras to Cape Lookout (NCcentral) 2017 lidar-derived mean high water shoreline for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Bias feature containing proxy-datum bias information to be used in the Digital Shoreline Analysis System for the southern coast of North Carolina from Cape Lookout to Cape Fear (NCsouth) Associated data for Water Quality and Sediment Quality in the Albemarle Sound, North Carolina, 2012–14 Autonomous Underwater Vehicle Water-Quality Measurements in the Cape Fear River, multiple locations, North Carolina, 2020-2021 Soil and Water Assessment Tool (SWAT) models for the Pee Dee River Basin used to simulate future streamflow and irrigation demand based on climate and urban growth projections Eastern Environmental Wind Project Risk Polygons Multichannel Seismic-Reflection and Navigation Data Collected Using Sercel GI Guns and Geometrics GeoEel Digital Streamers During the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS Field Activity 2018-002-FA North Carolina 2015 State Wildlife Action Plan Species of Greatest Conservation Need North Carolina 2005 State Wildlife Action Plan Species of Greatest Conservation Need Groundwater Availability of the Northern Atlantic Coastal Plain National Wetlands Inventory - Wetlands Data: Current and future CCCma CGCM3.1 climate data for NHD v2 catchments within the Mississippi River Basin Data: Current and future CNRM CM3 climate data for NHD v2 catchments within the Mississippi River Basin Data: Current and future MPI ECHAM5 climate data for NHD v2 catchments within the Mississippi River Basin Ports of the United States GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow