Skip to main content
Advanced Search

Filters: Tags: rainfall (X) > Types: Map Service (X) > Types: Downloadable (X)

7 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
MethodsStudy area: Our initial study area included the entire globe. We began with a seamless grid of cells with a resolution of 0.5 degrees (i.e., ~50 km at the equator). Next, we created polylines representing coastlines using SRTM (Shuttle Radar Topographic Mission) v4.1 global digital elevation model data at a resolution of 250 m (Reuter et al. 2007). We used these coastline polylines to identify and retain cells that intersected the coast. We excluded 192,227 cells that did not intersect the coast. To avoid cells with minimal potential coastal wetland habitat, we used the coastline data to remove an additional 1,056 coastal cells that contained less than or equal to 5% coverage of land. We also removed 176...
thumbnail
This map layer shows polygons of average annual precipitation in thecontiguous United States, for the climatological period 1961-1990.Parameter-elevation Regressions on Independent Slopes Model (PRISM)derived raster data is the underlying data set from which the polygonsand vectors were created. PRISM is an analytical model that uses pointdata and a digital elevation model (DEM) to generate gridded estimatesof annual, monthly and event-based climatic parameters.
thumbnail
One of the determinants of runoff is the occurrence of excess rainfall events where rainfall rates exceed the infiltration capacity of soils. To help understand runoff risks, we calculated the probability of excess rainfall events across the Hawaiian landscape by comparing the probability distributions of projected rainfall frequency and land cover-specific infiltration capacity. We characterized soil infiltration capacity based on different land cover types (bare soil, grasses, and woody vegetation) and compared them to the frequency of large rainfall events under current and future (pseudo-global warming) climate scenarios. Here we provide two rasters of excess rainfall for current (2002-2012) and future (2090-2099)...
thumbnail
One of the determinants of runoff is the occurrence of excess rainfall events where rainfall rates exceed the infiltration capacity of soils. To help understand runoff risks, we calculated the probability of excess rainfall events across the Hawaiian landscape by comparing the probability distributions of projected rainfall frequency and land cover-specific infiltration capacity. We characterized soil infiltration capacity based on different land cover types (bare soil, grasses, and woody vegetation) and compared them to the frequency of large rainfall events under current and future (pseudo-global warming) climate scenarios. Here we provide a raster stack that contain the probability of excess rainfall exceeding...
thumbnail
Macroclimatic drivers, such as temperature and rainfall regimes, greatly influence ecosystem structure and function in tidal saline wetlands. Understanding the ecological influence of macroclimatic drivers is important because it provides a foundation for anticipating the effects of climate change. Tidal saline wetlands include mangrove forests, salt marshes, and salt flats, which occupy similar geomorphic settings but different climatic regimes. However, most global- or regional-scale analyses have treated these wetlands as independent systems. Here we used climate and literature-derived ecological data from all three systems, collected across targeted regional-scale macroclimatic gradients, to test hypotheses...
thumbnail
This map represents the distribution of seven moisture zones for the main Hawaiian Islands. The maps were produced as part of a species range modeling effort for the Hawaiian flora. Details on methodology and related products can be found in: Price, J. P., J. D. Jacobi, S. M. Gon, III, D. Matsuwaki, L. Mehrhoff, W. L. Wagner, M. Lucas, and B. Rowe. 2012, Mapping plant species ranges in the Hawaiian Islands-Developing a methodology and associated GIS layers. U.S. Geological Survey Open File Report OFR 2012-1192, Reston, VA.
thumbnail
Macroclimatic drivers, such as temperature and rainfall regimes, greatly influence ecosystem structure and function in tidal saline wetlands. Understanding the ecological influence of macroclimatic drivers is important because it provides a foundation for anticipating the effects of climate change. Tidal saline wetlands include mangrove forests, salt marshes, and salt flats, which occupy similar geomorphic settings but different climatic regimes. However, most global- or regional-scale analyses have treated these wetlands as independent systems. Here we used climate and literature-derived ecological data from all three systems, collected across targeted regional-scale macroclimatic gradients, to test hypotheses...


    map background search result map search result map Average Annual Precipitation (PRISM model) 1961 - 1990 Moisture zones for the main Hawaiian Islands Climatic controls on the global distribution, abundance, and species richness of mangrove forests Cell data Point data Hawaiian Islands probability of excess rainfall conditions under current (2002-2012) and future (2090-2099) scenarios Hawaiian Islands probability of excess rainfall conditions by land cover type under current (2002-2012) and future (2090-2099) scenarios Hawaiian Islands probability of excess rainfall conditions under current (2002-2012) and future (2090-2099) scenarios Hawaiian Islands probability of excess rainfall conditions by land cover type under current (2002-2012) and future (2090-2099) scenarios Moisture zones for the main Hawaiian Islands Average Annual Precipitation (PRISM model) 1961 - 1990 Point data Cell data Climatic controls on the global distribution, abundance, and species richness of mangrove forests