Skip to main content
Advanced Search

Filters: Tags: study areas (X) > Extensions: Shapefile (X)

34 results (15ms)   

View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
This dataset represents 505 campsites along the Colorado River in Grand Canyon with associated debris flow probabilities calculated for approximately a 100-year period (Griffiths and others, 2004) and geomorphic attributes mapped by the U.S. Geological Survey, Grand Canyon Monitoring and Research Center (USGS-GCMRC) (Hadley and others, 2018). The campsite polygons were developed as part of a master campsite database that was a collaborative effort to maintain between the National Park Service in Grand Canyon National Park and the USGS-GCMRC. Debris flow probabilities have been added as an attribute from ungauged tributary watersheds published in 2004 (Griffiths and others, 2004). Area and percentages of campsites...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
This data set consists of a polygon representing the study area for Paradise Valley, Humboldt County, Nevada as published in the U.S. Geological Survey Professional Paper 1409-F titled "Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada," 1996.
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
In May 2021, the Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey’s (USGS), Southwest Biological Science Center (SBSC) acquired airborne multispectral high resolution data for the Colorado River in Grand Canyon in Arizona, USA. The imagery data consist of four bands (Band 1 – red, Band 2 – green, Band 3 – blue, and Band 4 – near infrared) with a ground resolution of 20 centimeters (cm). These image data are available to the public as 16-bit GeoTIFF files, which can be read and used by most geographic information system (GIS) and image-processing software. The spatial reference of the image data are in the State Plane (SP) map projection using the central Arizona zone (FIPS 0202)...


map background search result map search result map Study area, Paradise Valley, Humboldt County, Nevada (U.S. Geological Survey Professional Paper 1409-F) shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cedar Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Edwin B. Forsythe NWR, NJ, 2010 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2010 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2012 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rockaway Peninsula, NY, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Parker River, MA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cape Lookout, NC, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cape Hatteras, NC, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rhode Island National Wildlife Refuge, RI, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assawoman Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cobb Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Metompkin Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Myrtle Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Parramore Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Wreck Island, VA, 2014 1:24,000-scale hydrographic areas, Walker River Basin, California and Nevada Spatial polygon footprint for the 105 aerial imagery tiles and 7 zones - 2021 Geomorphic attributes of campsites adjacent to the Colorado River in Grand Canyon, AZ (Provisional Release) shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Wreck Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Myrtle Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cobb Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Metompkin Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assawoman Island, VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Edwin B. Forsythe NWR, NJ, 2010 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2012 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Fire Island, NY, 2010 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Rhode Island National Wildlife Refuge, RI, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cape Lookout, NC, 2014 Study area, Paradise Valley, Humboldt County, Nevada (U.S. Geological Survey Professional Paper 1409-F) shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Cape Hatteras, NC, 2014 1:24,000-scale hydrographic areas, Walker River Basin, California and Nevada Geomorphic attributes of campsites adjacent to the Colorado River in Grand Canyon, AZ (Provisional Release) Spatial polygon footprint for the 105 aerial imagery tiles and 7 zones - 2021