Skip to main content
Advanced Search

Filters: Tags: tree mortality (X)

25 results (181ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset was used to summarize and analyze the mortality factors recorderd on dead trees in the Sierra Nevada Forest Dynamics Plot Network, which is managed by the Sequoia and Kings Canyon Field station of the U.S. Geological Survey's Western Ecological Research Center. Each row of the dataset represents an individual dead tree. These are dead trees that were recorded in the network from 1998 to 2010 for the subset of plots as described in the associated manuscript; These data support the following: Das, A.J., Stephenson, N.L., Davis, K.P. 2016. Why do trees die? Characterizing the drivers of background tree mortality. Ecology. 97(10): 2616-2627, https://doi.org/10.1002/ecy.1497
thumbnail
2010 USDA Forest Service, Rocky Mountain Region Aerial Detection Survey Data. This data depicts the occurrence and location of forest insect, disease, and other biotic and abiotic causes of tree mortality and tree damage. Aerial survey data is collected by observing areas of tree damage or tree mortality from an aircraft and manually recording the information onto a map. Due to the nature of aerial surveys, this data will only provide rough estimates of location, intensity and the resulting trend information for agents detectable from the air. Many of the most destructive diseases are not represented in the data because these agents are not detectable from aerial surveys. The data presented should only be used as...
thumbnail
This dataset records mortality-- including involvement of bark beetles-- and burn severity information for trees in long term forest dynamics plots in Sequoia National Park and Yosemite National Park that experienced fire. These data support the following publication: Furniss, T.J., Das, A.J., van Mantgem, P.J., Stephenson, N.L. and Lutz, J.A., 2021. Crowding, climate, and the case for social distancing among trees. Ecological Applications, p.e2507, https://doi.org/10.1002/eap.2507
Severe droughts cause widespread tree mortality and decreased growth in forests across the globe. Forest managers are seeking strategies to increase forest resistance (minimizing negative impacts during the drought) and resilience (maximizing recovery rates following drought). Limited experimental evidence suggests that forests with particular structural characteristics have greater capacity to resist change and or recover ecosystem function in the face of drought. However, the applicability of these results to practical forest conservation and management remains unclear. This project utilized an existing network of eight long-term, operational-scale, forest management experiments from Arizona to Maine to examine...
thumbnail
These datasets contain the attributes of individual trees located in and around Sequoia and Kings Canyon national parks. Attributes include remote sensing indices, terrain characteristics, and-- for the calibration data-- tree size and growth rates. Calibration data (mixedconifervulnerability_calibrationdataset.csv) were collected in long term research plots where trees are visited annually to check for mortality and periodically re-measured for diameter to capture growth. Validation data (mixedconifervulnerability_validationdataset.csv) were collected as part of a randomized sample located within a remote sensing 'flight box'. Remote sensing indices and terrain variables for both datasets were extracted from National...
thumbnail
2010 USDA Forest Service, Rocky Mountain Region Aerial Detection Survey Data. This data depicts the occurrence and location of forest insect, disease, and other biotic and abiotic causes of tree mortality and tree damage. Aerial survey data is collected by observing areas of tree damage or tree mortality from an aircraft and manually recording the information onto a map. Due to the nature of aerial surveys, this data will only provide rough estimates of location, intensity and the resulting trend information for agents detectable from the air. Many of the most destructive diseases are not represented in the data because these agents are not detectable from aerial surveys. The data presented should only be used as...
thumbnail
2010 USDA Forest Service, Rocky Mountain Region Aerial Detection Survey Data. This data depicts the occurrence and location of forest insect, disease, and other biotic and abiotic causes of tree mortality and tree damage. Aerial survey data is collected by observing areas of tree damage or tree mortality from an aircraft and manually recording the information onto a map. Due to the nature of aerial surveys, this data will only provide rough estimates of location, intensity and the resulting trend information for agents detectable from the air. Many of the most destructive diseases are not represented in the data because these agents are not detectable from aerial surveys. The data presented should only be used as...
thumbnail
These data were collected to quantify oak mortality during the 2014-2017 drought. 30 tenth hectare drought plots were established throughout the blue oak woodland of Sequoia National Park. Information on species, size, and mortality were collected for all standing trees in each plot. In addition, two long-term 2.25 ha plots were established, in which the same data were collected. These data are associated with the following publication: Das, A.J., Ampersee, N.J., Pfaff, A.H., Stephenson, N.L., Swiecki, T.J., Bernhardt, E.A., Haggerty, P.K. and Nydick, K.R., 2020. Tree mortality in blue oak woodland during extreme drought in Sequoia National Park, California. Madroño, 66(4), pp.164-175.
thumbnail
2010 USDA Forest Service, Rocky Mountain Region Aerial Detection Survey Data. This data depicts the occurrence and location of forest insect, disease, and other biotic and abiotic causes of tree mortality and tree damage. Aerial survey data is collected by observing areas of tree damage or tree mortality from an aircraft and manually recording the information onto a map. Due to the nature of aerial surveys, this data will only provide rough estimates of location, intensity and the resulting trend information for agents detectable from the air. Many of the most destructive diseases are not represented in the data because these agents are not detectable from aerial surveys. The data presented should only be used as...
thumbnail
These data were compiled to help understand how climate change may impact dryland pinyon-juniper ecosystems in coming decades, and how resource management might be able to minimize those impacts. Objective(s) of our study were to model the demographic rates of PJ woodlands to estimate the areas that may decline in the future vs. those that will be stable. We quantified populations growth rates across broad geographic areas, and identified the relative roles of recruitment and mortality in driving potential future changes in population viability in 5 tree species that are major components of these dry forests. We used this demographic model to project pinyon-juniper population stability under future climate conditions,...
Categories: Data; Tags: Arizona, Botany, California, Colorado, Ecology, All tags...
Southwestern Colorado is already experiencing the effects of climate change in the form of larger and more severe wildfires, prolonged severe droughts, tree mortality from insect outbreaks, and earlier snowmelt. Climate scientists expect the region to experience more frequent summer heat waves, longer-lasting and more frequent droughts, and decreased river flow in the future (Lukas et al. 2014). These changes will ultimately impact local communities and challenge natural resource managers in allocating water and range for livestock grazing under unpredictable drought conditions, managing forests in the face of changing fire regimes, and managing threatened species under shifting ecological conditions. Considering...
thumbnail
These data describe tree mortality and the factors associated with tree mortality for a variety of plots in Sequoia National Park. Most of the data were collected between 2014 and 2017 (during an extremely severe drought), along with some comparison data from 2004 to 2007. These data support the following publication: Stephenson, N.L., Das, A.J., Ampersee, N.J., Bulaon, B.M., and Yee, J.L., In review. Which trees die during drought? The key role of insect host-tree selection, Journal of Ecology
thumbnail
ADS Spruce Budworm Data. USDA Forest Service, Rocky Mountain Region Aerial Detection Survey Data. This data depicts the occurrence and location of forest insect, disease, and other biotic and abiotic causes of tree mortality and tree damage. Aerial survey data is collected by observing areas of tree damage or tree mortality from an aircraft and manually recording the information onto a map. Due to the nature of aerial surveys, this data will only provide rough estimates of location, intensity and the resulting trend information for agents detectable from the air. Many of the most destructive diseases are not represented in the data because these agents are not detectable from aerial surveys. The data presented should...
thumbnail
2010 USDA Forest Service, Rocky Mountain Region Aerial Detection Survey Data. This data depicts the occurrence and location of forest insect, disease, and other biotic and abiotic causes of tree mortality and tree damage. Aerial survey data is collected by observing areas of tree damage or tree mortality from an aircraft and manually recording the information onto a map. Due to the nature of aerial surveys, this data will only provide rough estimates of location, intensity and the resulting trend information for agents detectable from the air. Many of the most destructive diseases are not represented in the data because these agents are not detectable from aerial surveys. The data presented should only be used as...
thumbnail
This data consists of observations of individual trees in western US national parks and forests. Information on individual trees include species identity, measurements of tree size, current status (live or dead), local competition, and growth metrics based on tree rings. The data also includes estimates of plot-level characteristics.
thumbnail
These data consist of environmental covariates and estimated plot-level mortality of ponderosa pine trees. Environmental covariates include growing season temperature and soil moisture, and values are summarized into long-term mean conditions, and anomalies observed between forest inventory sampling events for each plot. Data also include plot locations (with uncertainty introduced by the US Forest Service to maintain private property rights), plot basal area, and several variables related to estimated mortality rate of ponderosa pine trees under various assumptions about basal area conditions.
Categories: Data; Tags: Arizona, Botany, California, Climatology, Colorado, All tags...
thumbnail
Most of these data were collected in order to create a database of tree locations for use in calibrating remote sensing tools and products, particularly dead tree detection tools and canopy species maps. Data include tree locations, species identification, and status (live, dead, and, if dead, sometimes includes information on foliage and twig retention). They are a collection of different sampling efforts performed over several years, starting in a period of severe drought mortality. One csv table is included that shows data and validation results for an additional dataset that was used to test the NAIP derived dead tree detection model that is associated with this data release. Locations are not included for that...
Ages and diameters were measured in mature stands for each of 507 ponderosa pine, 541 lodgepole pine, 141 limber pine, and 217 Engelmann spruce trees in the Colorado Front Range of the Rocky Mountains, USA. Cumulative age distributions were statistically different for each species. The spruce and ponderosa pine age distributions each exhibited a strong infection point at @?210 and 125 yr, respectively, while neither lodgepole nor limber pine showed such a sharp inflection point. We suggest that the presence of this inflection point may be indicative of "climax" type in mature stands and interpret the age distributions of these species as reflective of their climax, colonizing and fugitive ecological patterns, respectively....
thumbnail
2010 USDA Forest Service, Rocky Mountain Region Aerial Detection Survey Data. This data depicts the occurrence and location of forest insect, disease, and other biotic and abiotic causes of tree mortality and tree damage. Aerial survey data is collected by observing areas of tree damage or tree mortality from an aircraft and manually recording the information onto a map. Due to the nature of aerial surveys, this data will only provide rough estimates of location, intensity and the resulting trend information for agents detectable from the air. Many of the most destructive diseases are not represented in the data because these agents are not detectable from aerial surveys. The data presented should only be used as...
Tree loss is increasing rapidly due to drought- and heat-related mortality and intensifying fire activity. Consequently, the fate of many forests depends on the ability of juvenile trees to withstand heightened climate and disturbance anomalies. Extreme climatic events, such as droughts and heatwaves, are increasing in frequency and severity, and trees in mountainous regions must contend with these landscape-level climate episodes. Recent research focuses on how mortality of individual tree species may be driven by drought and heatwaves, but how juvenile mortality under these conditions would vary among species spanning an elevational gradient—given concurrent variation in climate, ecohydrology, and physiology–remains...