Skip to main content
Advanced Search

Filters: Tags: {"type":"Organization","name":"south central casc"} (X) > Extensions: Citation (X)

10 results (203ms)   

View Results as: JSON ATOM CSV
Abstract (from Science Direct): Agricultural drought is characterized by low soil moisture levels that negatively affect agricultural production, but in situ soil moisture measurements are largely absent from indices commonly used to describe agricultural drought. Instead, many indices incorporate weather-derived soil moisture estimates, which is necessary, in part, because the relationships between in situ soil moisture and agricultural-drought impacts are not well quantified. Our objective was to use in situ soil moisture data from monitoring networks in Oklahoma and West Texas to identify a soil moisture-based agricultural drought index that is (i) strongly related to crop-yield anomaly across networks, (ii)...
Abstract (from https://dl.sciencesocieties.org/publications/sssaj/abstracts/81/3/490): In situ soil moisture measurements have the potential to improve wildfire danger assessments, which often rely on the Keetch–Byram Drought Index (KBDI) as a soil moisture surrogate. However, the relative merits of measured soil moisture and KBDI as indicators of wildfire danger are unknown. Therefore, our objectives were to (i) identify relationships between drought indices (KBDI or fraction of available water capacity, FAW) and wildfire size for 34,939 growing and dormant-season wildfires, (ii) compare relationships between each drought index and wildfire probability for 501 large (≥ 405 ha) growing-season and dormant-season...
Abstract (from http://link.springer.com/article/10.1007/s00382-017-3534-z): Annual precipitation in the largely agricultural South-Central United States is characterized by a primary wet season in May and June, a mid-summer dry period in July and August, and a second precipitation peak in September and October. Of the 22 CMIP5 global climate models with sufficient output available, 16 are able to reproduce this bimodal distribution (we refer to these as “BM” models), while 6 have trouble simulating the mid-summer dry period, instead producing an extended wet season (“EW” models). In BM models, the timing and amplitude of the mid-summer westward extension of the North Atlantic Subtropical High (NASH) are realistic,...
While we collect and monitor soil temperatures within natural and managed ecosystems across the Southern High Plains (SHP), we do not have a clear understanding of how soil temperature parameters are linked to ecosystem services, soil health and sustainability under increasing climate variability and increasing drought severity. Understanding how management decisions will either create positive or negative feedback loops with respect to soil temperature dynamics may be critical for developing sound conservation and soil management practices. As much of the SHP is privately owned and is managed either under intensive row cropping systems, any drought mitigation efforts and practices that influence and promote soil...
The South-Central U.S. is home to diverse climates and ecosystems, strong agricultural and energy sectors, and fast-growing urban areas. All share a critical need for water, which is becoming an increasingly scarce resource across the region as aquifers are overdrawn and populations grow. Understanding what brings rain to this region, and how the timing and amount of precipitation may be affected by climate change, is essential for effective water planning and management. However, currently available information on long-term precipitation trends for the South Central region is often perceived to be irrelevant to community planners and water managers, due to multiple factors including mismatches between the time...
The purpose of this project was to enhance the knowledge of local tribal environmental professionals related to planning for the increased frequency of weather events as a result of climate change. Beyond expanding knowledge, the objective of this workshop introduce the Division of Regional and City Planning faculty and students to the planning needs of tribal communities related to climate change. As a secondary objective, the grantees sought to lay a foundation for building relationships with the regional BIA offices and the tribal environmental professionals for future planning and research activities.
Abstract (from Springer): Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although...