Skip to main content
Advanced Search

Filters: Categories: NOT Data (X) > Tags: {"type":"Label"} (X) > Date Range: {"choice":"month"} (X)

51 results (357ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Label )
View Results as: JSON ATOM CSV
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
North American freshwater mussels are in serious decline as a result of pollution and habitat destruction from human activities. In addition, many mussel species are living in habitats that push the upper limits of their heat tolerance, which may become problematic as the climate and, as a result, water temperatures warm. As part of this project, we created a set of models to predict how freshwater mussels would respond to climate change effects. Our primary objective was to help federal and state natural resource managers forecast how mussel species will respond to climate change over the next 30 to 50 years, so that managers can develop appropriate adaptation strategies to address these changes. Additionally,...
thumbnail
Water in the western United States is disappearing, and several states are facing severe water shortages as drought conditions worsen. Many streams are drying up, and there is growing concern that this trend will only continue as climate change produces warmer and drier conditions. The loss of stream ecosystems has far reaching ecological, social, and economic implications. Species that depend on these ecosystems for habitat will be at greater risk of extinction and humans will lose vital sources of water relied upon for agriculture, drinking water, and recreation. This project aimed to identify how water availability is changing in the West, focusing specifically on when and where streams go dry. Researchers...
thumbnail
Water scarcity is a growing concern in Texas, where surface water is derived almost entirely from rainfall. Changes in air temperature and precipitation patterns associated with global climate change are anticipated to regionally affect the quality and quantity of inland surface waters and consequently their suitability as habitat for freshwater life. In addition to directly affecting resident organisms and populations, these changes in physicochemical traits of aquatic habitats may favor the establishment of harmful invasive species. As conflicts over the use of water resources grow in intensity, this information will become important for fish and wildlife managers to anticipate impacts of climate change on trust...
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
A hydrologic model was developed as part of the Southeast Regional Assessment Project using the Precipitation Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, and land use on basin hydrology. Streamflow and other components of the hydrologic cycle simulated by PRMS were used to inform other types of simulations such as water-temperature, hydrodynamic, and ecosystem-dynamics simulations.
thumbnail
The USGS and Virginia Tech are determining if and how the implementation of conservation practices, such as best management practices (BMPs), in watersheds have improved the health of Chesapeake nontidal streams. Our goal is to identify the effects of BMPs and land-use on stream ecosystems by linking upstream landscape change to stream physical habitat, water quality, flow and temperature, and macroinvertebrate and fish responses. We are also determining the specific sources of stress to streams and fish populations to help identify which management practices are most likely to improve stream health. Each year from 2021 to 2024 we study a different Chesapeake landscape setting that is a focus area for stakeholders...
thumbnail
Sport fisheries of lakes are embedded in complex system of ecological and social interactions. The multiple drivers that affect lake sport fisheries, along with the complex interactions within lakes, make it difficult to forecast changes in sport fisheries and plan adaptive responses to build resilience of these important resources. Resilience involves managing with an eye toward critical thresholds for behavior of ecosystems. Project researchers are working to develop quantitative tools for assessment of thresholds in sport fisheries that can be used by management agencies to evaluate potential impacts of climate change mediated through species and habitat interactions. Several outputs of the project will be adaptable...
thumbnail
Recent extreme floods on the Mississippi and Missouri Rivers have motivated decision-makers and resource managers to expaned floodplain conservation lands. Within Missouri, there are more than 85,000 acres of public conservation lands in large-river floodplains. Floodplain lands are highly dynamic and challenging to manage, particularly climatic conditions change. These lands have the potential to provide valuable ecosystem services, like wildlife habitat, nutrient processing, carbon sequestration, and flood-water storage, that produce economic values in terms of recreational spending, improved water quality, and decreased flood hazards. However, floodplain managers may need tools to help them understand changing...
thumbnail
Human impacts occurring throughout the DOI Northeast Climate Science Center, including urbanization, agriculture, and dams, have multiple effects on streams in the region which support economically valuable stream fishes. Changes in climate are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing stream water temperatures. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project met that need by integrating results of a current condition assessment of stream habitats based on fish response to human land use, water quality impairment,...
thumbnail
Inland fisheries are critical for global food security and human well-being. However, fish production may be threatened by changes in climate and land use. Understanding this threat is crucial to effectively manage inland fisheries in the future. To address this need, this project will identify which types of lakes across the globe are most vulnerable to the impacts of climate and land use changes. Lakes will be categorized based on their depth, vulnerability to food insecurity, and vulnerability to water insecurity – variables which can all influence how detrimental climate and land use change will actually be on a lake. This information will be used to predict how inland fisheries production might change under...
thumbnail
Walleye, a socially and economically important sportfish across much of North America, are experiencing population declines in many lakes throughout their range. Studies suggest that multiple factors – potentially linked to climate change – are contributing to the decline of walleye, including changes in lake temperatures, loss of habitat, increasing water clarity (perhaps due to drought), and interactions with other fish. This research seeks to identify the mechanisms that underlie declining walleye populations, particularly the low survival rate of young walleye. Data will be collected through a whole-lake experiment, an analysis of long-term data from lakes in northern Wisconsin, and simulation modeling. Members...
thumbnail
Great Lakes fishery managers and stakeholders have little information regarding how climate change could affect the management and conservation of fish populations, including those of high recreational and commercial value. Scientists from the US Geological Survey (USGS) worked closely with state management agencies and the National Wildlife Federation to complete several objectives that provide knowledge to aid their planning and management strategies in anticipation of coming changes. First, researchers updated a regional Great Lakes climate model to predict water level changes, water temperatures, and ice cover data for the entire Great Lakes basin 50-100 years into the future. Second, researchers used satellite...
thumbnail
Throughout its native range in the Eastern U.S., the brook trout is a culturally and economically important species that is sensitive to warming stream temperatures and habitat degradation. The purpose of this assessment was to determine the impacts that projected future land use and climate changes might have on the condition of stream habitat to support self-sustaining brook trout populations. The study region encompassed the historic native range of brook trout, which includes the northeastern states and follows the Appalachian Mountains south to Georgia, where the distribution is limited to higher elevation streams with suitable water temperatures. Relationships between recent observations of brook trout and...
thumbnail
Tens of millions of migratory birds are dependent on wetland and riparian stopovers in arid and semiarid regions of North America. Global climate change would superimpose even greater stress on these ecosystems as indicated by climate change model predictions of higher temperatures and less precipitation in the southwestern United States. In partnership with the University of Arizona, the Nebraska Cooperative Research Unit, and the NASA Goddard Space Flight Center, USGS scientists have investigated (1) how climate change may alter the spacing and quality of critical wetland stopover habitats; (2) the sensitivities of migrating songbirds to loss of riparian forests due to climate change and water-use patterns; (3)...
thumbnail
The southeastern U.S. contains a unique diversity of ecosystems that provide important benefits, including habitat for rare wildlife and plants, improved water quality, and recreation opportunities. Understanding how climate change will affect these ecosystems is vital for knowing how best to protect them and the services they supply. The goal of this project was to assess the climate change vulnerability of 12 key ecosystems in the southeastern U.S. and Caribbean, ranging from Caribbean coastal mangrove to Nashville Basin limestone glade and woodland. Scientists used the existing scientific literature and geospatial analysis to determine each ecosystem’s sensitivity to changes in climate, its exposure level to...
thumbnail
USGS researchers assessed how climate change can affect land cover and flow in river systems, examining a variety of resolutions for detecting and projecting the conditions of aquatic habitats and species.
thumbnail
This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport...
thumbnail
Coastal rivers draining into the Gulf of Maine are home to the endangered Gulf of Maine Distinct Population Segment of Atlantic salmon. The Gulf of Maine population began to decline significantly by the late 19th century, leading to the closure of the commercial Atlantic salmon fishery in 1948. In recent years, populations have again begun to decrease again. State and federal fisheries biologists are concerned that climate-related changes in streamflow and temperature could impact salmon survival in these rivers. Projections of future climate conditions for the Northeast indicate warming air temperatures, earlier snowmelt runoff, and decreases in streamflow during the low flow period (summer). In the spring, snow...
thumbnail
The broad range of complex factors influencing coastal systems contribute to large uncertainties in predicting long-term sea level rise impacts. Researchers demonstrated the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments for predicting uncertainty. A BN was used to define relationships between driving forces, geologic constraints, and coastal response for the U.S. Atlantic coast that include observations of local rates of relative sea level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline change rate. The BN was used to make probabilistic predictions of shoreline retreat in response...


map background search result map search result map Projected Impacts of Future Climate on Bird Conservation in Arid and Semi-Arid Regions Impact of Changes in Streamflow and Temperature on Endangered Atlantic Salmon Forecasting Climate Change Induced Effects on Recreational and Commercial Fish Populations in the Great Lakes Modeling the Response of Freshwater Mussels to Changes in Water Temperature, Habitat, and Streamflow Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes Assessing Climate-Sensitive Ecosystems in the Southeastern U.S. Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Projected Vulnerability of Brook Trout to Climate and Land Use Changes in the Eastern U.S. (Regional Assessment) FishTail: A Tool to Inform Conservation of Stream Fish Habitats in the Northeast Science to Inform Management of Floodplain Conservation Lands in a Changing World Climate Change and Resilience of Sport Fisheries in Lakes SERAP:  The Effects of Climate Change on Aquatic Species and Habitat in the Southeast SERAP:  Modeling of Hydrologic Systems SERAP:  Assessment of Shoreline Retreat in Response to Sea Level Rise River’s End: Mapping Patterns of Stream Drying in the Western United States Evaluating Future Effects of Climate and Land Use on Fisheries Production in Inland Lakes Safe Operating Space for Walleye: Understanding the Conditions Needed to Sustain Recreational Fisheries in a Changing World Chesapeake​ Stream Team River’s End: Mapping Patterns of Stream Drying in the Western United States Chesapeake​ Stream Team SERAP:  Assessment of Shoreline Retreat in Response to Sea Level Rise Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes SERAP:  The Effects of Climate Change on Aquatic Species and Habitat in the Southeast SERAP:  Modeling of Hydrologic Systems Safe Operating Space for Walleye: Understanding the Conditions Needed to Sustain Recreational Fisheries in a Changing World Climate Change and Resilience of Sport Fisheries in Lakes Impact of Changes in Streamflow and Temperature on Endangered Atlantic Salmon Science to Inform Management of Floodplain Conservation Lands in a Changing World Modeling and Projecting the Influence of Climate Change on Texas Surface Waters and their Aquatic Biotic Communities Projected Impacts of Future Climate on Bird Conservation in Arid and Semi-Arid Regions Forecasting Climate Change Induced Effects on Recreational and Commercial Fish Populations in the Great Lakes Projected Vulnerability of Brook Trout to Climate and Land Use Changes in the Eastern U.S. (Regional Assessment) USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems Based on Future Climate Projections FishTail: A Tool to Inform Conservation of Stream Fish Habitats in the Northeast Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Assessing Climate-Sensitive Ecosystems in the Southeastern U.S. Modeling the Response of Freshwater Mussels to Changes in Water Temperature, Habitat, and Streamflow Evaluating Future Effects of Climate and Land Use on Fisheries Production in Inland Lakes