USGS Lidar Point Cloud PA_Northcentral_2019_B19 e1517n2007
Dates
Publication Date
2020-11-17
Start Date
2019-03-20
End Date
2019-03-28
File Modification Date
2020-11-18 03:20:31
Citation
U.S. Geological Survey, 20201117, USGS Lidar Point Cloud PA_Northcentral_2019_B19 e1517n2007: U.S. Geological Survey.
Summary
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information. This data set is a LAZ (compressed LAS) format file containing [...]
Summary
Lidar (Light detection and ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. The LAS format is a standardized binary format for storing 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of x (longitude), y (latitude) and z (elevation) points. A few older projects in this collection are in ASCII format. Please refer to http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html for additional information. This data set is a LAZ (compressed LAS) format file containing lidar point cloud data. Compression to an LAZ file was done with the LAStools 'laszip' program and can be unzipped with the same free program (laszip.org).
High-resolution digital elevation maps generated by airborne and stationary LiDAR have led to significant advances in geomorphology, the branch of geoscience concerned with the origin and evolution of Earth's surface topography. LiDAR provides unique characteristics relative to other remotely sensed data sources by providing three-dimensional feature information that cannot be derived from traditional imaging sensors.