Skip to main content
Advanced Search

Filters: Extensions: Shapefile (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: U.S. Geological Survey, SOUTHEAST REGION (X)

13 results (58ms)   

View Results as: JSON ATOM CSV
thumbnail
This report describes the thickness and areal extent of the Sparta aquifer, identifies sands within the fresh-water extent of the aquifer, and presents data and a map that illustrate the generalized potentiometric surface (water levels) during October 1996. The report includes a detailed geophysical log, structure contour maps, hydrogeologic sections, and hydrographs of water levels in selected wells. The potentiometric surface-map can be used for determining direction of ground-water flow, hydraulic gradients, and the effects of withdrawals on the aquifer.
thumbnail
The study of the geohydrology of the Sparta Sand is the initial phase in the investigation of the geohydrology of the Claiborne Group. The thicker sections of the Sparta Sand lie along the axes of the Mississippi embayment and Desha basin. The area of maximum thickness, 1,100-1,200 feet, is in Claiborne and Warren Counties, Miss., and Madison Parish, La. Local thickening or thinning over some structures indicates structural movement during Sparta time. A sand-percentage map prepared from data derived from interpretation of electric logs indicates that the Sparta Sand was deposited as a delta-fluvial plain complex in Arkansas, Louisiana, and Mississippi. This complex shows a text-book example of a well-developed...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the periods 2020-59 (centered in the year 2040) and 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical...
Sulfur hexafluoride (SF6) is a trace atmospheric gas that is primarily of anthropogenic origin but also occurs naturally in fluid inclusions in some minerals and igneous rocks, and in some volcanic and igneous fluids. SF6 has been used as a dating tool of groundwater because atmospheric concentrations of SF6 are expected to continue increasing (Busenberg and Plummer, 1997). SF6 samples were collected in 30 wells in New Hanover County, North Carolina in May 2017. The results of these samples were input into a spreadsheet calculator developed by the USGS Groundwater Dating lab in order to estimate groundwater age based on SF6 concentrations. The wells sampled include monitoring, domestic, and large water user wells...
thumbnail
The Sparta aquifer is the principal source of ground water in north-central Louisiana. In 1985, the aquifer was extensively pumped for public supply (25 Mgal/d) and industrial use (29 Mgal/d and 7 Mgal/d for 1989). More than 100 public supply systems, in 8 parishes, contain water from the Sparta aquifer. Large industrial pumpage from the Sparta aquifer began in 1922 at Bastrop (Sanford, 1973a, p. 60) and in about 1923 at West Monroe. Water levels in wells in the Sparta aquifer have been declining in these arease and in other parts of north-central Louisiana since the early 1920's, when industries began withdrawing large amounts of water. However, in Morehouse Parish the water levels in wells have been recovering...
thumbnail
This report describes the thickness and areal extent of the Sparta aquifer, identifies sands within the fresh-water extent of the aquifer, and presents data and a map that illustrate the generalized potentiometric surface (water levels) during October 1996. The report includes a detailed geophysical log, structure contour maps, hydrogeologic sections, and hydrographs of water levels in selected wells. The potentiometric surface-map can be used for determining direction of ground-water flow, hydraulic gradients, and the effects of withdrawals on the aquifer.
thumbnail
The study of the geohydrology of the Sparta Sand is the initial phase in the investigation of the geohydrology of the Claiborne Group. The thicker sections of the Sparta Sand lie along the axes of the Mississippi embayment and Desha basin. The area of maximum thickness, 1,100-1,200 feet, is in Claiborne and Warren Counties, Miss., and Madison Parish, La. Local thickening or thinning over some structures indicates structural movement during Sparta time. A sand-percentage map prepared from data derived from interpretation of electric logs indicates that the Sparta Sand was deposited as a delta-fluvial plain complex in Arkansas, Louisiana, and Mississippi. This complex shows a text-book example of a well-developed...
thumbnail
During the spring of 2001, water levels were measured in 427 wells in the Sparta-Memphis aquifer in Arkansas and the Sparta aquifer in Louisiana. Water-quality samples were collected for temperature and specific-conductance measurements during the spring and summer of 2001 from 150 wells in Arkansas in the Sparta-Memphis aquifer. Dissolved chloride samples were collected and analyzed for 87 of the 150 wells. Water-quality samples were not collected in Louisiana. Maps of areal distribution of potentiometric surface, difference in water-level measurements from 1997 to 2001, and specific conductance generated from these data reveal spatial trends across the study area. The highest water-level altitude measured in Arkansas...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the periods 2020-59 (centered in the year 2040) and 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical...
thumbnail
The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 NOAA Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2020-59 (centered in 2040) or to the period 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical period. Geospatial data provided in...
thumbnail
This report describes the thickness and areal extent of the Sparta aquifer, identifies sands within the fresh-water extent of the aquifer, and presents data and a map that illustrate the generalized potentiometric surface (water levels) during October 1996. The report includes a detailed geophysical log, structure contour maps, hydrogeologic sections, and hydrographs of water levels in selected wells. The potentiometric surface-map can be used for determining direction of ground-water flow, hydraulic gradients, and the effects of withdrawals on the aquifer. Brantly, J.A., Seanor, R.C., McCoy, K.L., 2002, Hydrogeology and potentiometric surface of the Sparta aquifer in northern Louisiana, October 1996: U.S. Geological...
thumbnail
The study of the geohydrology of the Sparta Sand is the initial phase in the investigation of the geohydrology of the Claiborne Group. The thicker sections of the Sparta Sand lie along the axes of the Mississippi embayment and Desha basin. The area of maximum thickness, 1,100-1,200 feet, is in Claiborne and Warren Counties, Miss., and Madison Parish, La. Local thickening or thinning over some structures indicates structural movement during Sparta time. A sand-percentage map prepared from data derived from interpretation of electric logs indicates that the Sparta Sand was deposited as a delta-fluvial plain complex in Arkansas, Louisiana, and Mississippi. This complex shows a text-book example of a well-developed...
thumbnail
A digital dataset of analog simulation of water-level declines in the Sparta Sand, Mississippi Embayment in Missouri, Kentucky, Arkansas, Tennessee, Louisiana, and Mississippi was developed from J.E. Reed's "Analog simulation of water-level declines in the Sparta Sand, Mississippi Embayment" (1972). The plate was georeferenced to North American Datum 1983 and projected to USA Contiguous Albers Equal Conic (U.S. Geological Survey version) projection (standard parallels 29.5 and 45.5 degrees, central meridian -96 degrees, and latitude of origin 23 degrees). Once georeferenced (using ArcMap v 10.4.1), individual potentiometric contours were digitized manually. Figures included in the digital dataset are figures 2...


    map background search result map search result map Wells sampled for groundwater-age dating in New Hanover County, North Carolina Digitized Contours from Georeferenced Plate 1886 from "Analog simulation of water-level declines in the Sparta Sand, Mississippi Embayment" Digitized Contours from Georeferenced Plate 2001 from "Status of water levels and selected water-quality conditions in the Sparta-Memphis aquifer in Arkansas and the Sparta aquifer in Louisiana, spring-summer 2001" Digitized Contours from Georeferenced Plate 1996 from "Louisiana Ground-Water Map No. 13: Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996" Digitized Contours from Georeferenced Plate 1989 from "Louisiana ground-water map no. 3: Potentiometric surface, 1989, and water-level changes, 1980-89, of the Sparta aquifer in north-central Louisiana" Structure Contours of the Base of the Sparta Sand from Plate 3, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Piezometric Surface of the Sparta Sand from Plate 8, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Cumulative Thickness Isopachs in the Sparta Sand from Plate 10, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Structure Contours from Top of Sparta Aquifer from Figure 2, 1996, from Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996 (Brantly, Seanor, and McCoy, 2002) Structure Contours from Bottom of Sparta Aquifer from Figure 3, 1996, from Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996 (Brantly, Seanor, and McCoy, 2002) Shapefile of Areal Reduction Factor (ARF) regions for the state of Florida (ARF_regions.shp) Shapefile of NOAA Atlas 14 stations in Florida (Atlas14_stations.shp) Shapefile of climate regions for the state of Florida (Climate_regions.shp) Wells sampled for groundwater-age dating in New Hanover County, North Carolina Digitized Contours from Georeferenced Plate 1996 from "Louisiana Ground-Water Map No. 13: Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996" Digitized Contours from Georeferenced Plate 1989 from "Louisiana ground-water map no. 3: Potentiometric surface, 1989, and water-level changes, 1980-89, of the Sparta aquifer in north-central Louisiana" Structure Contours from Top of Sparta Aquifer from Figure 2, 1996, from Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996 (Brantly, Seanor, and McCoy, 2002) Structure Contours from Bottom of Sparta Aquifer from Figure 3, 1996, from Hydrogeology and Potentiometric Surface of the Sparta Aquifer in Northern Louisiana, October 1996 (Brantly, Seanor, and McCoy, 2002) Cumulative Thickness Isopachs in the Sparta Sand from Plate 10, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Piezometric Surface of the Sparta Sand from Plate 8, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Digitized Contours from Georeferenced Plate 2001 from "Status of water levels and selected water-quality conditions in the Sparta-Memphis aquifer in Arkansas and the Sparta aquifer in Louisiana, spring-summer 2001" Structure Contours of the Base of the Sparta Sand from Plate 3, 1968, from Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas (Payne, 1968) Digitized Contours from Georeferenced Plate 1886 from "Analog simulation of water-level declines in the Sparta Sand, Mississippi Embayment" Shapefile of NOAA Atlas 14 stations in Florida (Atlas14_stations.shp) Shapefile of Areal Reduction Factor (ARF) regions for the state of Florida (ARF_regions.shp) Shapefile of climate regions for the state of Florida (Climate_regions.shp)