Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - ScienceBase (X) > Extensions: Raster (X) > Types: OGC WMS Layer (X)

104 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at New Croton Reservoir during June 2017, July 2017, and October 2017. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured...
thumbnail
In 2004, about 90 migrating elk drowned after attempting to cross thin ice on the Mores Creek arm of Lucky Peak Lake upstream of the Highway 21 bridge. To better understand the depths over a range of reservoir pool elevations in the Mores Creek Arm, the U.S. Geological Survey, in cooperation with the Lucky Peak Power Plant Project, conducted high-resolution multibeam echosounder (MBES) bathymetric surveys on the Mores Creek arm on Lucky Peak Lake. The MBES data will assist reservoir managers and wildlife biologists with regulating reservoir water surface elevations (WSE) to support successful big game migration across Mores Creek on Lucky Peak Lake. Data collection provided nearly 100 percent coverage of bed elevations...
thumbnail
This dataset includes inputs and results for parameterizing the USGS Thornthwaite Monthly Water Balance Model (MWBM) to simulate annual stream permanence on National Hydrography Dataset (NHD) stream reaches. Also included are results from sensitivity analysis of MWBM parameters to final stream permanence classification (permanent or nonpermanent). The dataset includes files that link PRISM climate grids to NHD catchments and flowlines. Data tables describe the sensitivity of MWBM stream permanence classifications to each of the altered MWBM parameters. Suitable MWBM parameter sets, which resulted in accuracy of at least 65% when compared to observed surface water conditions, for modeling stream permanence are presented...
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the 2010 USGS preliminary model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the gridded data for the 2010 PGA at 10% probability can be found in the zip archive that can be downloaded using a link on this page.
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the Global Seismic Hazard Assessment Program (GSHAP) model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the GSHAP data can be found here. Shedlock, K.M., Giardini, Domenico, Grünthal, Gottfried, and Zhang, Peizhan, 2000, The GSHAP Global Seismic Hazar Map, Sesimological Research Letters, 71, 679-686. https://doi.org/10.1785/gssrl.71.6.679
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Assawoman Island, Assawoman Island, Atlantic Ocean, Barrier Island, Bayesian Network, All tags...
From May 2017 to November 2019, the U.S. Geological Survey conducted bathymetric surveys of New York City's East of Hudson Reservoirs. Bathymetry data were collected at Amawalk Reservoir from May 2018 to November 2019. Depth data were collected primarily with a multibeam echosounder. Quality assurance points were measured with a single-beam echosounder. Water surface elevations were established using real-time kinematic (RTK) and static global navigation satellite system (GNSS) surveys and submersible pressure transducers. Measured sound velocity profiles were used to correct echosounder depth measurements for thermal stratification. Digital elevation models were created by combining the measured bathymetry data...
thumbnail
The Sparta aquifer is the principal source of ground water in north-central Louisiana. In 1985, the aquifer was extensively pumped for public supply (25 Mgal/d) and industrial use (29 Mgal/d and 7 Mgal/d for 1989). More than 100 public supply systems, in 8 parishes, contain water from the Sparta aquifer. Large industrial pumpage from the Sparta aquifer began in 1922 at Bastrop (Sanford, 1973a, p. 60) and in about 1923 at West Monroe. Water levels in wells in the Sparta aquifer have been declining in these arease and in other parts of north-central Louisiana since the early 1920's, when industries began withdrawing large amounts of water. However, in Morehouse Parish the water levels in wells have been recovering...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
In cooperation with the South Carolina Department of Transportation, the U.S. Geological Survey prepared a geospatial raster dataset describing impervious surface in the SC StreamStats study area derived from the 30m resolution National Land Cover Dataset (NLCD) 2019. This layer, which covers the SC StreamStats study area, has been resampled from the source resolution to a scale of 30ft pixels and reprojected to the common projection of the other project data layers (SC State Plane NAD 1983 International Feet WKID 2273). It will be served as part of the SC StreamStats application (https://streamstats.usgs.gov) to describe delineated watersheds. The StreamStats application provides access to spatial analytical tools...
thumbnail
We created a single map of surface water presence by intersecting water classes from available land cover products (National Wetland Inventory, Gap Analysis Program, National Land Cover Database, and Dynamic Surface Water Extent) across the U.S. state of Arizona. We derived classified samples for four wetland classes from the harmonized map: water, herbaceous wetlands, wooded wetlands, and non-wetland cover. In Google Earth Engine (GEE) we developed a random forest model that combined the training data with spatially explicit predictor variables of vegetation greenness indices, wetness indices, seasonal index variation, topographic variables, and hydrologic parameters. The final product is a wall-to-wall map of...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 50 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the Oklahoma Water Resources Board, produced this data release that includes vector and raster geographic information systems layers used in the analysis and publication of a mean annual runoff and annual runoff variability map for 1940–2007 for Oklahoma. The data release covers all 69 8-digit hydrologic units with at least 1 square mile of area in Oklahoma; those 8-digit hydrologic units contain 2,870 12-digit hydrologic units that provided the geographic framework for the analysis described in the companion map report (USGS Scientific Investigations Map 3482). The mean annual runoff and annual runoff variability values presented in this data release are most...
thumbnail
The U.S. Geological Survey (USGS) computed rasters of pre-solved values for the watersheds draining to the pixel delineation point representing the watershed's mean maximum 30-minute precipitation occurring on average once in 2 years from NOAA Atlas 14. These values will be served in the National StreamStats Fire-Hydrology application to describe delineated watersheds ( https://streamstats.usgs.gov/ ). The StreamStats application provides access to spatial analysis tools that are useful for water-resources planning and management, and for engineering and design purposes. The map-based user interface can be used to delineate drainage areas, to retrieve basin characteristics, to estimate flow statistics, and more.
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Raster; Tags: Alabama, Arizona, Arkansas, California, Climatology, All tags...
thumbnail
Summary This data release contains postprocessed model output from simulations of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A modeled tsunami wave was generated by rapid motion of unstable material into Barry Arm Fjord. This wave propagated through Prince William Sound and then into Passage Canal east of Whittier. Here we consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b) and use a simulation setup similar to that work. The results presented here are not identical to those presented in Barnhart and others (2021a, 2021b) because the results in this data release were obtained using an expanded dataset of topography and...


map background search result map search result map Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Floodplain Inundation Attribute Rasters: Mississippi & Illinois Rivers Digitized Contours from Georeferenced Plate 1989 from "Louisiana ground-water map no. 3: Potentiometric surface, 1989, and water-level changes, 1980-89, of the Sparta aquifer in north-central Louisiana" points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2013–2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Lookout, NC, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assawoman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fisherman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Myrtle Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Ship Shoal Island, VA, 2014 Geospatial bathymetry datasets for Amawalk Reservoir, New York, 2018 to 2019 Geospatial bathymetry datasets for New Croton Reservoir, New York, 2017 Sensitivity and precision of stream permanence estimates (1977-2019) from the USGS Thornthwaite Monthly Water Balance Model in the Pacific Northwest, USA Pre-computed mean maximum 30-minute 2-year precipitation rasters from the 43 available conterminous states, for use in the StreamStats Fire-Hydrology application 2021 Mores Creek Arm Bathymetric Survey - Depth DEM, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Data release for mean annual runoff and annual runoff variability map for Oklahoma, 1940–2007 Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Impervious Land Cover Raster Derived from the National Land Cover Dataset (NLCD) 2019 for South Carolina StreamStats Wetlands in the state of Arizona Mores Creek Arm Bathymetric Survey - Depth DEM, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Geospatial bathymetry datasets for Amawalk Reservoir, New York, 2018 to 2019 Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Fisherman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Ship Shoal Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Myrtle Island, VA, 2014 Geospatial bathymetry datasets for New Croton Reservoir, New York, 2017 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Assawoman Island, VA, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Lookout, NC, 2014 Digitized Contours from Georeferenced Plate 1989 from "Louisiana ground-water map no. 3: Potentiometric surface, 1989, and water-level changes, 1980-89, of the Sparta aquifer in north-central Louisiana" Impervious Land Cover Raster Derived from the National Land Cover Dataset (NLCD) 2019 for South Carolina StreamStats Wetlands in the state of Arizona Data release for mean annual runoff and annual runoff variability map for Oklahoma, 1940–2007 Sensitivity and precision of stream permanence estimates (1977-2019) from the USGS Thornthwaite Monthly Water Balance Model in the Pacific Northwest, USA Floodplain Inundation Attribute Rasters: Mississippi & Illinois Rivers Pre-computed mean maximum 30-minute 2-year precipitation rasters from the 43 available conterminous states, for use in the StreamStats Fire-Hydrology application 2021 Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years