Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - ScienceBase (X) > Types: OGC WMS Service (X)

4,412 results (26ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: see below under 'Related Resources' or 'Child Items' for links to specific Phase 2 Channel Islands data files. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: see below under 'Related Resources' or 'Child Items' for links to specific Phase 2 Santa Barbara County data files. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
The U.S. Geological Survey in cooperation with the Grand River Dam Authority completed a high-resolution multibeam bathymetric survey to compute a new capacity and surface-area table. The capacity and surface-area tables describe the relation between the elevation of the water surface and the volume of water that can be impounded at each given water-surface elevation. The capacity and surface area of Grand Lake O’ the Cherokees were computed from a Triangular Irregular Network (TIN) surface created in Global Mapper Version 21.0.1. The TIN surface was created from three datasets: (1) a multibeam bathymetric survey of Grand Lake O’ the Cherokees in 2019 (Hunter and others 2020), (2) a 2017 USGS bathymetric survey...
thumbnail
This dataset contains absolute-gravity data collected by the USGS Southwest Gravity Program, a collaborative effort of the Arizona, California, and New Mexico Water Science Centers to monitor and model groundwater-storage change. Data were collected following the methods in "Procedures for Field Data Collection, Processing, Quality Assurance and Quality Control, and Archiving of Relative and Absolute-Gravity Surveys", U.S. Geological Survey Techniques and Methods book 2, chapter D4 . All data are reviewed and approved. Additional gravity data, including network-adjusted relative- and absolute-gravity data, may be available in ScienceBase Data Releases.Gravity data are provided as two files:sgp_agdb_stations_YYYY-MM-DD.csv...


map background search result map search result map CoSMoS 3.0 Phase 2 flood hazard projections: 100-year storm in San Diego County CoSMoS 3.0 Phase 2 flood depth and duration projections: 20-year storm in San Diego County CoSMoS 3.0 Phase 2 flood depth and duration projections: 1-year storm in San Diego County CoSMoS 3.0 Phase 2 wave-hazard projections: 1-year storm in San Diego County CoSMoS v3.0 Phase 2 - Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 100-year storm in Santa Barbara County CoSMoS v3.0 Phase 2 - Channel Islands CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Ventura County CoSMoS 3.0 Phase 2 water level projections: 20-year storm in Orange County CoSMoS 3.0 Phase 2 water level projections: average conditions in Orange County CoSMoS 3.0 Phase 2 ocean-currents hazards: 20-year storm in Orange County CoSMoS v3.0 water level projections: 100-year storm in Channel Islands CoSMoS v3.1 wave-hazard projections: 100-year storm in San Luis Obispo County CoSMoS v3.1 water level projections: 20-year storm in San Luis Obispo County Data release of Bathymetric Map, Surface Area, and Capacity of Grand Lake O' the Cherokees, Northeastern Oklahoma, 2019 CoSMoS v3.1 water level projections: 20-year storm in Santa Cruz County CoSMoS v3.1 ocean-currents hazards: 20-year storm in Monterey County CoSMoS v3.1 ocean-currents hazards: 100-year storm in Monterey County Southwest Gravity Program Absolute-Gravity Database (updated 2023-10-31) CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Ventura County CoSMoS v3.1 water level projections: 20-year storm in Santa Cruz County Data release of Bathymetric Map, Surface Area, and Capacity of Grand Lake O' the Cherokees, Northeastern Oklahoma, 2019 CoSMoS v3.0 Phase 2 - Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 100-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 water level projections: 20-year storm in Orange County CoSMoS 3.0 Phase 2 water level projections: average conditions in Orange County CoSMoS 3.0 Phase 2 ocean-currents hazards: 20-year storm in Orange County CoSMoS v3.1 wave-hazard projections: 100-year storm in San Luis Obispo County CoSMoS v3.1 water level projections: 20-year storm in San Luis Obispo County CoSMoS v3.1 ocean-currents hazards: 20-year storm in Monterey County CoSMoS v3.1 ocean-currents hazards: 100-year storm in Monterey County CoSMoS 3.0 Phase 2 flood hazard projections: 100-year storm in San Diego County CoSMoS 3.0 Phase 2 flood depth and duration projections: 20-year storm in San Diego County CoSMoS 3.0 Phase 2 flood depth and duration projections: 1-year storm in San Diego County CoSMoS 3.0 Phase 2 wave-hazard projections: 1-year storm in San Diego County CoSMoS v3.0 Phase 2 - Channel Islands CoSMoS v3.0 water level projections: 100-year storm in Channel Islands Southwest Gravity Program Absolute-Gravity Database (updated 2023-10-31)