Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: Roy E Petrakis (X)

37 results (40ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release contains data used in an associated publication: Petrakis, R.E., Norman, L.M., Vaughn, K., Pritzlaff, R., Weaver, C., Rader, A., and Pulliam, H.R., 2021, Hierarchical Clustering for Paired Watershed Experiments: Case Study in Southeastern Arizona, U.S.A.: Water, v. 13, no. 21, p. 2955, https://doi.org/10.3390/w13212955. The overarching effects and benefits of land management decisions, such as through watershed restoration, are often not fully understood due to a lacking control within an experimental design. This can be addressed through the application of a paired watershed approach, allowing for comparison between treatment and control watersheds. We developed and applied a statistic-based...
thumbnail
Members from the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team are releasing monthly surface water maps for the conterminous United States (U.S.) from 2003 through 2019 as 250-meter resolution geoTIFF files. The maps were produced using the Dynamic Surface Water Extent (DSWE) algorithm applied to daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (DSWEmod) (Soulard et al., 2021) - see associated items. The DSWEmod model classifies the landscape (i.e., each MODIS pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class...
thumbnail
Members from the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team are releasing monthly surface water maps for the conterminous United States (U.S.) from 2003 through 2019 as 250-meter resolution geoTIFF files. The maps were produced using the Dynamic Surface Water Extent (DSWE) algorithm applied to daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (DSWEmod) (Soulard et al., 2021) - see associated items. The DSWEmod model classifies the landscape (i.e., each MODIS pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class...
thumbnail
This data release comprises the data files and code necessary to perform all analyses presented in the associated publication. The *.csv data files are aggregations of water extent on the basis of the European Commission's Joint Research Centre (JRC) Monthly Water History database (v1.0) and the Dynamic Surface Water Extent (DSWE) algorithm. The shapefile dataset contains the study area 8-digit hydrologic unit code (HUC) regions used as the basis for analysis. Html files provide an overview of the study workflow and integrated R notebooks (in .Rmd format) for recreating all project results and plots. The R notebook ingest the necessary data files from their online locations. These data support the following publication:...
thumbnail
Members from the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team are releasing monthly surface water maps for the conterminous United States (U.S.) from 2003 through 2019 as 250-meter resolution geoTIFF files. The maps were produced using the Dynamic Surface Water Extent (DSWE) algorithm applied to daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (DSWEmod) (Soulard et al., 2021) - see associated items. The DSWEmod model classifies the landscape (i.e., each MODIS pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class...
thumbnail
We apply a research approach that can inform riparian restoration planning by developing products that show recent trends in vegetation conditions identifying areas potentially more at risk for degradation and the associated relationship between riparian vegetation dynamics and climate conditions. The vegetation is characterized using a series of remote sensing vegetation indices developing using satellite imagery, including the Normalized Difference Vegetation Index (NDVI) and Tasseled Cap (TC) Transformation metrics of brightness, greenness, and wetness. Each of these remote sensing vegetation indices provides a unique characterization of the vegetation properties. For example, NDVI provides a general overview...
We apply a research approach that can inform riparian restoration planning by developing products that show recent trends in vegetation conditions identifying areas potentially more at risk for degradation and the associated relationship between riparian vegetation dynamics and climate conditions. The full suite of data products and a link to the associated publication addressing this analysis can be found on the Parent data release. For this study, the vegetation conditions are characterized using a series of remote sensing vegetation indices developing using satellite imagery, including the Normalized Difference Vegetation Index (NDVI) and the Tasseled Cap (TC) Transformation. The NDVI is a commonly used vegetation...
thumbnail
This data release comprises the raster data files and code necessary to perform all analyses presented in the associated publication. The 16 TIF raster data files are classified surface water maps created using the Dynamic Surface Water Extent (DSWE) model implemented in Google Earth Engine using published technical documents. The 16 tiles cover the country of Cambodia, a flood-prone country in Southeast Asia lacking a comprehensive stream gauging network. Each file includes 372 bands. Bands represent surface water for each month from 1988 to 2018, and are stacked from oldest (Band 1 - January 1988) to newest (Band 372 - December 2018). DSWE classifies pixels unobscured by cloud, cloud shadow, or snow into five...
thumbnail
USGS researchers with the Patterns in the Landscape – Analyses of Cause and Effect (PLACE) project are releasing a collection of high-frequency surface water map composites derived from daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Using Google Earth Engine, the team developed customized image processing steps and adapted the Dynamic Surface Water Extent (DSWE) to generate surface water map composites in California for 2003-2019 at a 250-m pixel resolution. Daily maps were merged to create 6, 3, 2, and 1 composite(s) per month corresponding to approximately 5-day, 10-day, 15-day, and monthly products, respectively. The resulting maps are available as downloadable files for each year. Each...
thumbnail
Members from the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team are releasing monthly surface water maps for the conterminous United States (U.S.) from 2003 through 2019 as 250-meter resolution geoTIFF files. The maps were produced using the Dynamic Surface Water Extent (DSWE) algorithm applied to daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (DSWEmod) (Soulard et al., 2021) - see associated items. The DSWEmod model classifies the landscape (i.e., each MODIS pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class...
We apply a research approach that can inform riparian restoration planning by developing products that show recent trends in vegetation conditions identifying areas potentially more at risk for degradation and the associated relationship between riparian vegetation dynamics and climate conditions. The full suite of data products and a link to the associated publication addressing this analysis can be found on the Parent data release. For this study, the vegetation conditions are characterized using a series of remote sensing vegetation indices developed using satellite imagery, including the Normalized Difference Vegetation Index (NDVI). The NDVI is a commonly used vegetation index that quantifies relative greenness...
thumbnail
Members from the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team are releasing monthly surface water maps for the conterminous United States (U.S.) from 2003 through 2019 as 250-meter resolution geoTIFF files. The maps were produced using the Dynamic Surface Water Extent (DSWE) algorithm applied to daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (DSWEmod) (Soulard et al., 2021) - see associated items. The DSWEmod model classifies the landscape (i.e., each MODIS pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class...
thumbnail
Members from the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team are releasing monthly surface water maps for the conterminous United States (U.S.) from 2003 through 2019 as 250-meter resolution geoTIFF files. The maps were produced using the Dynamic Surface Water Extent (DSWE) algorithm applied to daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (DSWEmod) (Soulard et al., 2021) - see associated items. The DSWEmod model classifies the landscape (i.e., each MODIS pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class...
We apply a research approach that can inform riparian restoration planning by developing products that show recent trends in vegetation conditions identifying areas potentially more at risk for degradation and the associated relationship between riparian vegetation dynamics and climate conditions. The full suite of data products and a link to the associated publication addressing this analysis can be found on the Parent data release. For this study, the vegetation conditions are characterized using a series of remote sensing vegetation indices developing using satellite imagery, including the Normalized Difference Vegetation Index (NDVI) and the Tasseled Cap (TC) Transformation. The NDVI is a commonly used vegetation...
We apply a research approach that can inform riparian restoration planning by developing products that show recent trends in vegetation conditions identifying areas potentially more at risk for degradation and the associated relationship between riparian vegetation dynamics and climate conditions. The full suite of data products and a link to the associated publication addressing this analysis can be found on the Parent data release. To characterize the climate conditions across the study period, we use the Standardized Precipitation Evapotranspiration Index (SPEI). The SPEI is a water balance index which includes both precipitation and evapotranspiration in its calculation. Conditions from the prior n months, generally...
Categories: Data
thumbnail
Members from the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team are releasing monthly surface water maps for the conterminous United States (U.S.) from 2003 through 2019 as 250-meter resolution geoTIFF files. The maps were produced using the Dynamic Surface Water Extent (DSWE) algorithm applied to daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (DSWEmod) (Soulard et al., 2021) - see associated items. The DSWEmod model classifies the landscape (i.e., each MODIS pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class...
thumbnail
Members from the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team are releasing monthly surface water maps for the conterminous United States (U.S.) from 2003 through 2019 as 250-meter resolution geoTIFF files. The maps were produced using the Dynamic Surface Water Extent (DSWE) algorithm applied to daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (DSWEmod) (Soulard et al., 2021) - see associated items. The DSWEmod model classifies the landscape (i.e., each MODIS pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class...
thumbnail
The dataset comprises a Landsat-derived assessment of monthly surface water extent within the study area (California's greater Central Valley). The surface water dataset is based on the algorithm for the Dynamic Surface Water Extent (DSWE) (Jones, 2019), which was adapted to the Google Earth Engine JavaScript environment. The level of spatial aggregation is by level-8 hydrologic unit code (HUC).
thumbnail
Mapping the spatial dynamics of perceived social value across the landscape can help develop a restoration economy that can support ecosystem services in the region. Many different methods have been used to map perceived social value. We used the Social Values for Ecosystem Services (SolVES) GIS tool, version 3.0, which uses social survey responses and various environmental variables to map social value. In the social survey distributed by the Borderlands Restoration Network (BRN) in May 2017, the respondents were asked to consider twelve different social values and map locations on a map where they perceived those social values to be. Additionally, they were asked to weigh each social value using a total of 100...
thumbnail
Members from the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team are releasing monthly surface water maps for the conterminous United States (U.S.) from 2003 through 2019 as 250-meter resolution geoTIFF files. The maps were produced using the Dynamic Surface Water Extent (DSWE) algorithm applied to daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (DSWEmod) (Soulard et al., 2021) - see associated items. The DSWEmod model classifies the landscape (i.e., each MODIS pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class...


map background search result map search result map Datasets for Integrating stream gage data and Landsat imagery to complete time-series of surface water extents in Central Valley, California Monthly summaries of pixel counts in Dynamic Surface Water Extent (DSWE) classes in level-8 HUCs in the greater Central Valley, California Perceived Social Value of the Sonoita Creek Watershed using the Social Values for Ecosystem Services (SolVES) Tool, Arizona, U.S.A. Implementation of a Surface Water Extent Model using Cloud-Based Remote Sensing - Code and Maps DSWEmod surface water map composites generated from daily MODIS images - California Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2003 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2005 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2009 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2011 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2012 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2014 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2016 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2018 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2019 Database of Trends in Vegetation Properties and Climate Adaptation Variables on the San Carlos Apache Reservation and Upper Gila River Watershed (1935-2021) Perceived Social Value of the Sonoita Creek Watershed using the Social Values for Ecosystem Services (SolVES) Tool, Arizona, U.S.A. Database of Trends in Vegetation Properties and Climate Adaptation Variables on the San Carlos Apache Reservation and Upper Gila River Watershed (1935-2021) Implementation of a Surface Water Extent Model using Cloud-Based Remote Sensing - Code and Maps Datasets for Integrating stream gage data and Landsat imagery to complete time-series of surface water extents in Central Valley, California Monthly summaries of pixel counts in Dynamic Surface Water Extent (DSWE) classes in level-8 HUCs in the greater Central Valley, California DSWEmod surface water map composites generated from daily MODIS images - California Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2003 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2005 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2009 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2011 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2012 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2014 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2016 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2018 Monthly Dynamic Surface Water Extent MODIS (DSWEmod) Images for the Conterminous United States – 2019