Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: Charles S Mueller (X)

80 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
A comparison of the 2017 USGS South America seismic hazard model with the Global Seismic Hazard Assessment Program (GSHAP) model and the 2010 USGS preliminary model was made to see how the models differ. The comparisons were made as ratios of PGA at 10% probability of exceedance in 50 years. Ratio maps of each comparison are included as a geo-referenced tiff (GeoTIFF).
thumbnail
The U.S. Geological Survey (USGS) national seismic hazard models (NSHM) consider two kinds of earthquake sources. Specific faults are modeled where possible. Where faults cannot be identified or characterized, alternative sources can be developed from seismicity catalogs. In a paper submitted to Seismological Research Letters ("Related External Resources", below), we describe a methodology that has been developed at the USGS for making earthquake catalogs for seismic hazard analysis. In this data release we provide the catalogs for the conterminous U.S. that accompany the SRL article. A new catalog is assembled from several preexisting catalogs. Moment magnitudes and related parameters for modeling seismicity...
thumbnail
This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.05 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 1 percent probability of exceedance in 1 year. The data are for the Western United States and are based on the long-term 2014 National Seismic Hazard Model.
thumbnail
In processing step 3, declustering is applied to flag aftershocks and foreshocks in catalog wmm.c2. Each earthquake is considered a potential mainshock, and an algorithm searches for events within a specified distance from its epicenter and time after its origin (Gardner and Knopoff, 1974). A smaller earthquake found within a window is an aftershock. If a larger earthquake is found, the first earthquake is a foreshock of the larger one. WUS catalog wmm.c3 is produced by deleting aftershocks and foreshocks from wmm.c2; it consists of statistically independent earthquakes with moment magnitudes greater than or equal to 2.5.
thumbnail
These data sets are the results of calculations of hazard curves for a grid of points with a spacing of 0.05 degrees in latitude and longitude. They represent the chance of experiencing potentially damaging ground shaking for fixed ground shaking levels that corresponds with MMI = VII. The values are obtained by averaging the probability of experiencing MMI = VII based on a peak ground acceleration value of 0.2152 g for site class D, and the probability of experiencing MMI = VII based on 1.0-second spectral acceleration value of 0.2256 g for site class D. The data are for the Central and Eastern United States.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 10 percent probability of exceedance in 50 years.
Here, we provide the seismicity catalogs for the western United States (WUS). A uniform earthquake catalog is assembled by combining and winnowing pre-existing source catalogs. The initial, final, and supporting earthquake catalogs are made available here.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 50 percent probability of exceedance in 50 years.
thumbnail
Seismic hazard curves were determined using the USGS seismic hazard model for South America. The curves represent the annual rate of exceedance versus peak horizontal acceleration or horizontal spectral response acceleration for 0.2- or 1.0-second periods, for a grid of points with a spacing of 0.1 degrees in latitude and longitude. The hazard curves were used to prepare maps and gridded data that portray peak horizontal acceleration and horizontal spectral response acceleration for 0.2- and 1.0-second periods with a 2%, 10%, and 50% probability of exceedance in 50 years, and a uniform site condition (Vs30) of 760 m/sec. MMI maps for 2%, 10%, and 50% probability of exceedance in 50 years were derived from PGA...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 10 percent probability of exceedance in 50 years.
thumbnail
In processing step 1, preexisting catalogs found online or in the literature are collected and merged. Each entry is reformatted to a standard record that lists basic earthquake information (moment magnitude, hypocenter, origin time), three parameters for modeling seismicity rates, and a comment field that lists the original catalog and size measure. Two distinct WUS catalogs are produced in step 1 to facilitate integrating California seismicity with the rest of the WUS. The Uniform California Earthquake Rupture Forecast (UCERF3) project developed a catalog for a region extending about 100km beyond the California border. Catalog B is constructed for the whole WUS with the intention of using only its part outside...
thumbnail
This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.05 degrees in latitude and longitude. It represents the average Modified Mercalli Intensity (MMI) with a 1-percent probability of exceedance in 1 year. Using a topographic-based soil classification method, the ground motions are amplified for soil type. The MMI values are the average of the MMI values obtained by converting peak ground acceleration to MMI and 1.0-second spectral response acceleration to MMI. The data are for the Western United States and are based on the long-term 2014 National Seismic Hazard Model.
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster
The U. S. Geological Survey (USGS) makes long-term seismic hazard forecasts that are used in building codes. The hazard models usually consider only natural seismicity; non-tectonic (man-made) earthquakes are excluded because they are transitory or too small. In the past decade, however, thousands of earthquakes related to underground fluid injection have occurred in the central and eastern U.S. (CEUS), and some have caused damage. In response, the USGS is now also making short-term forecasts that account for the hazard from these induced earthquakes. Seismicity statistics are analyzed to develop recurrence models, accounting for catalog completeness. In the USGS hazard modeling methodology, earthquakes are counted...
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the 2010 USGS preliminary model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the gridded data for the 2010 PGA at 10% probability can be found in the zip archive that can be downloaded using a link on this page.
thumbnail
Maximum considered earthquake geometric mean peak ground acceleration maps (MCEG) are for assessment of the potential for liquefaction and soil strength loss, as well as for determination of lateral earth pressures in the design of basement and retaining walls. The maps are derived from the USGS seismic hazard maps in accordance with the site-specific ground-motion procedures of the NEHRP Recommended Seismic Provisions for New Building and Other Structures and the ASCE Minimum Design Loads for Buildings and Other Structures (also known as the ASCE 7 Standard; ASCE, 2016). The MCEG ground motions are taken as the lesser of probabilistic and deterministic values, as explained in the Provisions. The gridded probabilistic...
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the Global Seismic Hazard Assessment Program (GSHAP) model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the GSHAP data can be found here. Shedlock, K.M., Giardini, Domenico, Grünthal, Gottfried, and Zhang, Peizhan, 2000, The GSHAP Global Seismic Hazar Map, Sesimological Research Letters, 71, 679-686. https://doi.org/10.1785/gssrl.71.6.679
thumbnail
The crustal fault model accounts for earthquakes that occur on faults that have not ruptured recently, but have have been active in historic and prehistoric periods. Although hundreds of Quaternary faults have been mapped, only a few of these faults have been studied sufficiently to reach a consensus regarding rate of deformation that can be applied in this hazard assessment. Information regarding the seismogenic source geometry and seismogenic source behavior that is necessary to model each fault is included for each fault. Files that can be used as input to computer hazard code are included.
thumbnail
This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.05 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 1 percent probability of exceedance in 1 year. The data are for the Western United States and are based on the long-term 2014 National Seismic Hazard Model.
thumbnail
Disaggregation of the seismic hazard for peak ground acceleration having a 2 percent probability of exceedance in 50 years is given for several major cities in South America. These disaggregation plots and reports show the relative contribution of individual sources to the seismic hazard (aggregated by magnitude and distance).
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 50 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...


map background search result map search result map 2) Probabilistic seismic hazard maps and data for South America Peak ground acceleration with a 10% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years Crustal fault model 3) Comparison with previous models Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Chance of potentially moderate-damage ground shaking in 2018 based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration for the Central and Eastern United States Modified Mercalli Intensity based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Western United States 0.2-second spectral response acceleration (5% of critical damping) with a 1% probability of exceedance in 1 year for the Western United States 1.0-second spectral response acceleration (5% of critical damping) with a 1% probability of exceedance in 1 year for the Western United States Modified Mercalli Intensity based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Western United States 0.2-second spectral response acceleration (5% of critical damping) with a 1% probability of exceedance in 1 year for the Western United States 1.0-second spectral response acceleration (5% of critical damping) with a 1% probability of exceedance in 1 year for the Western United States Chance of potentially moderate-damage ground shaking in 2018 based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration for the Central and Eastern United States Crustal fault model Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model 2) Probabilistic seismic hazard maps and data for South America 3) Comparison with previous models 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years