Skip to main content
Advanced Search

Filters: partyWithName: John F Stamm (X)

36 results (26ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided that tabulates...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates quantiles of change factors derived from various...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. Geospatial data provided in an ArcGIS shapefile are described herein. The shapefile contains polygons...
thumbnail
This U.S. Geological Survey (USGS) data release consists of evapotranspiration measurements made at the USGS Immokalee row crop climate station beginning September 22, 2008 and ending January 8, 2009. Daily evapotranspiration rates corrected to a near-surface energy-budget varied from 0.1 millimeter (9/28/2008) to 3.3 millimeters (9/24/2008). The eddy-covariance method was used, with high-frequency sensors installed above an experimental field planted in green peppers to measure sensible and latent heat fluxes. Ancillary meteorological data are also included in the data set: net radiation, soil temperature and moisture, air temperature, relative humidity, wind speed and direction, and ground-water level. Data were...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates change factors derived from the Analog Resampling...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates fitted historical precipitation depths derived...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates quantiles of change factors derived from various...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates fitted projected future precipitation depths derived...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. An R script (create_boxplot.R) is provided which generates...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates fitted projected future precipitation depths derived...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates fitted historical precipitation depths derived...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. An areal reduction factor (ARF) is computed to convert rainfall statistics of a point, such as at a weather...
thumbnail
The Prairie Pothole Region spans parts of North and South Dakota, Minnesota, Montana, Iowa and south-central Canada and contains millions of wetlands that provide habitat for breeding and migrating birds. Because it is the continent’s most important breeding area for waterfowl, conservation and management largely focuses on protecting habitat for nesting ducks. However, other wetland-dependent birds also rely on this region, and it is important to understand the degree to which habitat conserved for ducks provides habitat for other species, and how the quality of this habitat will be affected by climate change. Project researchers tested whether waterfowl are effective representatives, or surrogates, for other wetland-dependent...
thumbnail
Human-driven climate change presents natural resource managers with great uncertainties. Planning and executing effective management in the face of these uncertainties requires approaches nimble enough to address a broad range of interacting factors yet scientifically rigorous enough to support decisions and actions when faced with public scrutiny. Complex interactions among management practices and climate further stymie managers trying to plan for the future. Wind Cave National Park epitomizes this complexity hydrologically with its karst geology, sinking streams, and cave lakes, and ecologically with its prairie-forest ecotonal vegetation, large ungulate herds, and prescribed and wild fires. This project partnered...
Categories: Project
thumbnail
This U.S. Geological Survey (USGS) data release consists of evapotranspiration measurements made at the USGS Starkey pasture climate station beginning January 1, 2010 and ending April 30, 2016. Annual ET rates corrected to a near-surface energy-budget for the 12 calendar years of record at this site (2004-2015) varied from 718 mm (2007) to 903 mm (2010). The eddy-covariance method was used, with high-frequency sensors installed above the pasture to measure sensible and latent heat fluxes. Ancillary meteorological data are also included in the data set: net radiation, soil temperature and moisture, air temperature, relative humidity, wind speed and direction, rainfall, and ground-water levels. Data were collected...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. An R script (basin_boxplot.R) is provided provided as...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates quantiles of change factors derived from various...
thumbnail
Note: This data release has been deprecated. Please see new data release here: https://doi.org/10.5066/P935WRTG. This data release consists of Microsoft Excel workbooks, shapefiles, and a figure (png format) related to a cooperative project between the U.S. Geological Survey (USGS) and the South Florida Water Management District (SFWMD) to derive future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of future (2050-2089) to historical (1966-2005) extreme precipitation depths fitted to extreme precipitation data using a constrained maximum...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. An R script (create_boxplot.R) is provided which generates...
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided which tabulates change factors derived from the Multivariate Adaptive...


map background search result map search result map Understanding How Climate and Land Use Change Will Impact Wetland-Dependent Birds: Are Waterfowl Effective Surrogates for Other Species? Change factors to derive future precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida Documentation of R scripts to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in an ArcHydro Enhanced Database (AHED) basin or county (Documentation_R_script_create_boxplot.docx) R script that creates a wrapper function to automate the generation of boxplots of change factors for all ArcHydro Enhanced Database (AHED) basins (basin_boxplot.R) R script to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in an ArcHydro Enhanced Database (AHED) basin or county (create_boxplot.R) Shapefile of Areal Reduction Factor (ARF) regions for the state of Florida (ARF_regions.shp) Shapefile of climate regions for the state of Florida (Climate_regions.shp) Spreadsheet of best models for each downscaled climate dataset and for all downscaled climate datasets considered together (Best_model_lists.xlsx) Spreadsheet of change factors at 170 NOAA Atlas 14 stations in central and south Florida derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (CF_JupiterWRF_future_to_historical.xlsx) Spreadsheet of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from the Multivariate Adaptive Constructed Analogs (MACA) downscaled climate dataset (CF_MACA_future_to_historical.xlsx) Spreadsheet of fitted projected future precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from CORDEX downscaled climate dataset (DDF_CORDEX_future.xlsx) Spreadsheet of fitted projected future precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from LOCA downscaled climate dataset (DDF_LOCA_future.xlsx) Spreadsheet of fitted historical precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from CORDEX downscaled climate dataset (DDF_CORDEX_historical.xlsx) Spreadsheet of fitted historical precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from MACA downscaled climate dataset (DDF_MACA_historical.xlsx) Spreadsheet of quantiles of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from various downscaled climate datasets considering all models, and the RCP8.5 and SSP5-8.5 future emission scenarios (CFquantiles_future_to_historical_all_models_RCP8.5.xlsx). Spreadsheet of quantiles of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from various downscaled climate datasets considering only the best models and all future emission scenarios evaluated (CFquantiles_future_to_historical_best_models_allRCPs.xlsx). Spreadsheet of quantiles of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from various downscaled climate datasets considering only the best models, and the RCP8.5 and SSP5-8.5 future emission scenarios (CFquantiles_future_to_historical_best_models_RCP8.5.xlsx). Change factors to derive future precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida Documentation of R scripts to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in an ArcHydro Enhanced Database (AHED) basin or county (Documentation_R_script_create_boxplot.docx) R script that creates a wrapper function to automate the generation of boxplots of change factors for all ArcHydro Enhanced Database (AHED) basins (basin_boxplot.R) R script to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in an ArcHydro Enhanced Database (AHED) basin or county (create_boxplot.R) Spreadsheet of best models for each downscaled climate dataset and for all downscaled climate datasets considered together (Best_model_lists.xlsx) Spreadsheet of change factors at 170 NOAA Atlas 14 stations in central and south Florida derived from the Analog Resampling and Statistical Scaling Method by Jupiter Intelligence using the Weather Research and Forecasting Model (JupiterWRF) downscaled climate dataset (CF_JupiterWRF_future_to_historical.xlsx) Spreadsheet of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from the Multivariate Adaptive Constructed Analogs (MACA) downscaled climate dataset (CF_MACA_future_to_historical.xlsx) Spreadsheet of fitted projected future precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from CORDEX downscaled climate dataset (DDF_CORDEX_future.xlsx) Spreadsheet of fitted projected future precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from LOCA downscaled climate dataset (DDF_LOCA_future.xlsx) Spreadsheet of fitted historical precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from CORDEX downscaled climate dataset (DDF_CORDEX_historical.xlsx) Spreadsheet of fitted historical precipitation depths at 174 NOAA Atlas 14 stations in central and south Florida derived from MACA downscaled climate dataset (DDF_MACA_historical.xlsx) Spreadsheet of quantiles of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from various downscaled climate datasets considering all models, and the RCP8.5 and SSP5-8.5 future emission scenarios (CFquantiles_future_to_historical_all_models_RCP8.5.xlsx). Spreadsheet of quantiles of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from various downscaled climate datasets considering only the best models and all future emission scenarios evaluated (CFquantiles_future_to_historical_best_models_allRCPs.xlsx). Spreadsheet of quantiles of change factors at 174 NOAA Atlas 14 stations in central and south Florida derived from various downscaled climate datasets considering only the best models, and the RCP8.5 and SSP5-8.5 future emission scenarios (CFquantiles_future_to_historical_best_models_RCP8.5.xlsx). Shapefile of Areal Reduction Factor (ARF) regions for the state of Florida (ARF_regions.shp) Shapefile of climate regions for the state of Florida (Climate_regions.shp) Understanding How Climate and Land Use Change Will Impact Wetland-Dependent Birds: Are Waterfowl Effective Surrogates for Other Species?