Skip to main content
Advanced Search

Filters: partyWithName: North Central CASC (X)

236 results (40ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The USGS National Climate Change and Wildlife Science Center (NCCWSC) is currently engaged in an Ecological Drought initiative, focused on understanding the impacts of drought on natural ecosystems across the country. This project was designed to support the Ecological Drought initiative by creating a USGS EcoDrought Actionable Science Working Group. The goal of this working group was to identify science needs for drought-related decisions and to provide natural resource managers with practical strategies for adapting to and planning for drought. The working group engaged social scientists to garner advice on relevant social science research questions and data needs, as well as to identify any regulatory, institutional,...
thumbnail
Ecological drought impacts ecosystems across the U.S. that support a wide array of economic activity and ecosystem services. Managing drought-vulnerable natural resources is a growing challenge for federal, state and Tribal land managers. Plant communities and animal populations are strongly linked to patterns of drought and soil moisture availability. As a result, ecosystems may be heavily altered by future changes in precipitation and soil moisture that are driven by climate change. Although this vulnerability is well recognized, developing accurate information about the potential consequences of climate change for ecological drought is difficult because the soil moisture conditions that plants experience are...
thumbnail
Forested areas in the Western U.S. that are impacted by disturbances such as fire and drought have increased in recent decades. This trend is likely to continue, with the increase in frequency and extent of wildfire activity being especially concerning. Resource managers need reliable scientific information to better understand wildfire occurrence, which can vary substantially across landscapes and throughout time. However, few scientific models capture this variability, and projections of future potential changes in fire occurrence can include some uncertainty. This uncertainty can limit our ability to anticipate potential wildfire impacts on society and ecological systems. Another method to help managers prepare...
thumbnail
The broadly shared information needs for grassland managers in the North Central region to meet conservation goals in a changing climate are presented and ranked as highly relevant, somewhat relevant, or not relevant for federal, state, tribal, and non-governmental grassland-managing entities.
thumbnail
Human fossil fuel use and agricultural practices have increased atmospheric nitrogen deposits (e.g., through snow and rain) to mountain ecosystems. This, along with increasing measurable climate warming is affecting soil and water acidity and altering nutrient balances. In this project, North Central CASC-supported researchers will analyze decades of unexplored data, including surface water chemistry from the Loch Vale watershed in Rocky Mountain National Park and other long-term data from Colorado and Wyoming, to understand climate change and atmospheric nitrogen deposition impacts on high-elevation ecosystems. Synthesis workshops with resource management partners will be held to apply the data products and new...
Conversion of grassland to cropland in the US Prairie Pothole Region is of longstanding concern. The region's grasslands are carbon (C) sinks and provide important breeding grounds for many migratory bird species. Crop production requires more input use, potentially increasing pollution in the greater Mississippi watershed. Previous analyses of land conversion in the Prairie Pothole Region generally invoke neoclassical economic models and typically use secondary data to assess conversion decisions. To more deeply investigate farmers' land use choices, we use data from focus group meetings to learn about their conversion decisions, conversion costs, and motives. Farmers mentioned profit-related factors frequently...
Categories: Publication; Types: Citation
Satellite-based actual evapotranspiration (ETa) is becoming increasingly reliable and available for various water management and agricultural applications from water budget studies to crop performance monitoring. The Operational Simplified Surface Energy Balance (SSEBop) model is currently used by the US Geological Survey (USGS) Famine Early Warning System Network (FEWS NET) to routinely produce and post multitemporal ETa and ETa anomalies online for drought monitoring and early warning purposes. Implementation of the global SSEBop using the Aqua satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and global gridded weather datasets is presented. Evaluation of the SSEBop ETa...
Categories: Publication; Types: Citation
Ground validation of satellite-based vegetation phenology has been challenging because ground phenology data are sparsely distributed and mostly observed from limited numbers of plant species at discrete phenophases. The recently developed PhenoCam network has measured continuous growth of vegetation canopy greenness that can be used to validate satellite-based vegetation phenology across a variety of plant functional types. In this study, we used PhenoCam green chromatic coordinate (GCC) in North America to evaluate grassland phenology derived from three types of MODIS vegetation indices: the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and a per-pixel GCC (GCCpp) which was computed...
Abstract From: (The growth and distribution of plant species in water limited environments is often limited by the atmospheric evaporative demands which us measured in terms of potential evaporation (PET). While PET estimated by different methods have been widely used to assess vegetation response to climate change, species distribution models offer unique opportunity to compare their efficiency in predicting habitat suitability of plant species. In this study, we perform the first multi-species comparison of two widely used metrics of PET i.e., Penman-Monteith and Thornthwaite, and show how they result in similar or different on projected distribution of water limited species and potential consequences on their...
Observations of vegetation phenology at regional-to-global scales provide important information regarding seasonal variation in the fluxes of energy, carbon, and water between the biosphere and the atmosphere. Numerous algorithms have been developed to estimate phenological transition dates using time series of remotely sensed spectral vegetation indices. A key challenge, however, is that different algorithms provide inconsistent results. This study provides a comprehensive comparison of start of season (SOS) and end of season (EOS) phenological transition dates estimated from 500 m MODIS data based on two widely used sources of such data: the TIMESAT program and the MODIS Global Land Cover Dynamics (MLCD) product....
Near surface (i.e., camera) and satellite remote sensing metrics have become widely used indicators of plant growing seasons. While robust linkages have been established between field metrics and ecosystem exchange in many land cover types, assessment of how well remotely-derived season start and end dates depict field conditions in arid ecosystems remain unknown. We evaluated the correspondence between field measures of start (SOS; leaves unfolded and canopy greenness >0) and end of season (EOS) and canopy greenness for two widespread species in southwestern U.S. ecosystems with those metrics estimated from near-surface cameras and MODIS NDVI for five years (2012–2016). Using Timesat software to estimate SOS and...
This paper examines the impact of production network economies on designing cost-effective conservation targeting strategies. We first develop a theoretical model to study the decision to convert land from an extensive (or biodiversity-friendly) use to an intensive use (e.g., crop agriculture) in the presence of network economies in land use returns. The model supports the possibility of multiple land use equilibria due to network economies and identifies policy outcomes that increase welfare. Bandwagon effects can occur whereby spatial production spillovers from lands under intensive use can prompt further conversions on proximate lands under extensive use. Conversely, conservation sites can be placed strategically...
Categories: Publication; Types: Citation
Abstract (from ScienceDirect): Big sagebrush (Artemisia tridentata Nutt.) plant communities are found in western North America and comprise a mix of shrubs, forbs, and grasses. Climate, topography, and soil water availability are important factors that shape big sagebrush stand structure and plant community composition; however, most studies have focused on understanding these relationships at sites in a small portion of the big sagebrush region. Our goal was to characterize detailed stand structure and plant composition patterns and identify environmental variables related to those patterns by sampling 15 sites distributed across the western United States. In each site, we characterized stand structure at the individual...
Upper Klamath Lake (UKL) is the source of the Klamath River that flows through southern Oregon and northern California. The UKL Basin provides water for 81,000+ ha (200,000+ acres) of irrigation on the U.S. Bureau of Reclamation Klamath Project located downstream of the UKL Basin. Irrigated agriculture also occurs along the tributaries to UKL. During 2013–2016, water rights calls resulted in various levels of curtailment of irrigation diversions from the tributaries to UKL. However, information on the extent of curtailment, how much irrigation water was saved, and its impact on the UKL is unknown. In this study, we combined Landsat-based actual evapotranspiration (ETa) data obtained from the Operational Simplified...
Categories: Publication; Types: Citation
thumbnail
Lakes, reservoirs, and ponds are central and integral features of the North Central U.S. These water bodies provide aesthetic, cultural, and ecosystem services to surrounding wildlife and human communities. External impacts – such as climate change – can have significant impacts to these important parts of the region’s landscape. Understanding the responses of lakes to these drivers is critical for species conservation and management decisions. Water temperature data are foundational to providing this understanding and are currently the most widely measured of all aquatic parameters with over 400 unique groups monitoring water temperature in U.S. lakes and rivers. However, lake temperature data are lacking at...
The design of this survey protocol is based on the indicator framework presented in Wall et. al (2017 https://doi.org/10.1175/WCAS-D-16-0008.1) and is intended to evaluate projects funded by Climate Adaptation Science Centers. The intended respondents are stakeholders who were engaged in the creation of scientific knowledge and tools during these projects. The questions cover three topical areas: process (engagement in the process of knowledge production), outputs/outcomes (use of information), and impacts (building of relationships and trust).
Categories: Publication; Types: Citation
Macrosystem-scale research is supported by many ecological networks of people, infrastructure, and data. However, no network is sufficient to address all macrosystems ecology research questions, and there is much to be gained by conducting research and sharing resources across multiple networks. Unfortunately, conducting macrosystem research across networks is challenging due to the diversity of expertise and skills required, as well as issues related to data discoverability, veracity, and interoperability. The ecological and environmental science community could substantially benefit from networking existing networks to leverage past research investments and spur new collaborations. Here, we describe the need for...
Categories: Publication; Types: Citation
thumbnail
Drought is a complex environmental hazard that impacts both ecological and social systems. Accounting for the role of human attitudes, institutions, and societal values in drought planning is important to help identify how various drought durations and severity may differentially affect social resilience to adequately respond to and manage drought impacts. While there have been successful past efforts to understand how individuals, communities, institutions, and agencies plan for and respond to drought, these studies have relied on extensive multi-year case studies in specific locations. In contrast, this project seeks to determine how social science insights and methods can best contribute to ecological drought...
Today’s societal challenges, such as climate change and global pandemics, are increasingly complex and require collaboration across scientific disciplines to address. Scientific teams bring together individuals of varying backgrounds and expertise to work collaboratively on creating new knowledge to address these challenges. Within a scientific team, there is inherent diversity in disciplinary cultures and preferences for interpersonal collaboration. Such diversity contributes to the potential strength of the created knowledge but can also impede progress when teams struggle to collaborate productively. Facilitation is a professional practice-based form of interpersonal expertise that supports group members to do...
Categories: Publication; Types: Citation
thumbnail
Assessing the vulnerability of species to climate change is a key step in anticipating climate impacts on species. Vulnerability assessments characterize species’ future conservation needs and can guide current planning and management actions to support species persistence in the face of climate change. A full assessment of climate vulnerability involves characterizing three essential components: sensitivity, adaptive capacity, and exposure. Assessing sensitivity and adaptive capacity, as well as determining which aspects of exposure to assess all require detailed knowledge of species-specific traits and ecology. Such a detailed understanding is hard to come by, even for well-studied species, thus, developing vulnerability...


map background search result map search result map Eco-drought Actionable Science Working Group Understanding Historical and Predicting Future Lake Temperatures in North and South Dakota Developing and Testing a Rapid Assessment Method for Understanding Key Social Factors of Ecological Drought Preparedness Drought and Disturbances as Drivers of Long-Term Ecological Transformation and Risk A Climate Vulnerability Assessment Framework for Data-Poor Species Broadly Shared Information Needs Among Grassland Managers in the North Central Region Developing High-Resolution Soil Moisture Projections for the Contiguous U.S. Interpreting Global Change Impacts on Southern Rocky Mountain Alpine and Subalpine Ecosystems for Effective Resource Management Interpreting Global Change Impacts on Southern Rocky Mountain Alpine and Subalpine Ecosystems for Effective Resource Management Understanding Historical and Predicting Future Lake Temperatures in North and South Dakota Drought and Disturbances as Drivers of Long-Term Ecological Transformation and Risk A Climate Vulnerability Assessment Framework for Data-Poor Species Broadly Shared Information Needs Among Grassland Managers in the North Central Region Eco-drought Actionable Science Working Group Developing and Testing a Rapid Assessment Method for Understanding Key Social Factors of Ecological Drought Preparedness Developing High-Resolution Soil Moisture Projections for the Contiguous U.S.