Skip to main content
Advanced Search

Filters: Types: Shapefile (X) > Tags: {"type":"Place","name":"atlantic ocean"} (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

183 results (31ms)   

View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and backscatter, and subsurface stratigraphy associated with known and undiscovered sea-floor methane seeps. The first cruise, known as the Interagency Mission for Methane Research on Seafloor Seeps and designated as field...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Accomac Canyon, Atlantic Ocean, CMHRP, Chincoteague Ridge, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Cape Cod, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
This data set collects, from peer-reviewed research, values of sea surface temperature (SST) that occurred at various sites across the Earth during a brief period of the mid-Piacenzian
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, mean tidal range, and shoreline change rate are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of...
thumbnail
Two marine geological surveys were conducted in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven through the Long Island Sound Mapping and Research Collaborative. Sea-floor images and videos were collected at 210 sampling sites within the survey area, and surficial sediment samples were collected at 179 of the sites. The sediment data and the observations from the images and videos are used to identify sediment texture and sea-floor habitats.
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, Beckman Coulter Multisizer 3, CMHRP, CSV, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and backscatter, and subsurface stratigraphy associated with known and undiscovered sea-floor methane seeps. The first cruise, known as the Interagency Mission for Methane Research on Seafloor Seeps and designated as field...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Accomac Canyon, Applied Acoustics, Atlantic Margin, Atlantic Ocean, Baltimore Canyon, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...


map background search result map search result map Development: Development delineation: Edwin B. Forsythe NWR, NJ, 2010 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2010 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 Development: Development delineation: Parker River, MA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cape Lookout, NC, 2014 Development: Development delineation: Cape Lookout, NC, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rhode Island National Wildlife Refuge, RI, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Assawoman Island, VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fisherman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parramore Island, VA, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Smith Island, VA, 2014 Rate of shoreline change of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Location and grain-size analysis results of sediment samples collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (simplified point shapefile and CSV files) Sound velocity profiles - locations, images, and text files for sound velocity profiles calculated from XBT and CTD casts conducted during USGS field activities 2017-001-FA and 2017-002 FA Ultra-short baseline - navigation points and tracklines for Applied Acoustics EasyTrack Nexus 2 USBL data collected for ROV Global Explorer during USGS field activity 2017-001-FA Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2008 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Fisherman Island, VA, 2014 Development: Development delineation: Cape Lookout, NC, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Smith Island, VA, 2014 Development: Development delineation: Parker River, MA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Assawoman Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parramore Island, VA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 Development: Development delineation: Edwin B. Forsythe NWR, NJ, 2010 Location and grain-size analysis results of sediment samples collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (simplified point shapefile and CSV files) points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2010 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2008 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rhode Island National Wildlife Refuge, RI, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cape Lookout, NC, 2014 Rate of shoreline change of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Ultra-short baseline - navigation points and tracklines for Applied Acoustics EasyTrack Nexus 2 USBL data collected for ROV Global Explorer during USGS field activity 2017-001-FA Sound velocity profiles - locations, images, and text files for sound velocity profiles calculated from XBT and CTD casts conducted during USGS field activities 2017-001-FA and 2017-002 FA