Skip to main content
Advanced Search

Filters: Tags: {"scheme":"None","name":"usgs"} (X) > Types: Downloadable (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

765 results (26ms)   

Filters
View Results as: JSON ATOM CSV
thumbnail
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at five sites in Interior Alaska in September 2021 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. Borehole nuclear magnetic resonance (NMR) data were collected at two sites in order to determine liquid water content at depth in shallow boreholes. NMR data were collected in a 2.25 m-deep borehole at the North Star golf course adjacent to one of the ERT profiles, and in another two 1.625 m-deep boreholes adjacent to Big Trail Lake where previous NMR measurements were made in 2019 and 2020.
thumbnail
This data release provides digital flight line data for a high-resolution airborne magnetic survey over parts of northwestern Minnesota near the town of Mentor. The airborne survey was funded by the Earth Mapping Resources Initiative and was designed to meet complementary needs related to geologic mapping and characterization of mineral resource potential. A total of 40,139-line km of magnetic data were acquired over an irregular-shaped area of 9140 km2. Data were collected from a fixed-wing aircraft flown at mean terrain clearance of 120 meters (m) above topography along N-S flight lines spaced at 250 m intervals. Tie lines were flown in an E-W direction every 2500 m. Data were collected by EDCON-PRJ and NV5 Geospatial,...
thumbnail
This data release provides digital flight-line and gridded data for a high-resolution airborne magnetic and radiometric survey over the region surrounding the Wet Mountains of southern Colorado, including parts of Custer and Fremont Counties. Data for this survey were collected by Sander Geophysics Limited International (SGL) under contract with the USGS. The survey was flown in June and July of 2021 using a helicopter equipped with a magnetometer mounted in a stinger extending from the nose of the aircraft and a gamma-ray spectrometer stowed onboard. The helicopter pilots followed pre-planned flight paths in a grid-like pattern, with east-west lines spaced 150 meters apart and north-south lines spaced 1,000 meters...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: "Mineral Resources"], AASG, Antelope Creek, Arkansas River, Association of State Geologists, All tags...
thumbnail
This shapefile contains center-beam depths for approximately 5727 trackline kilometers of Simrad EM122 multibeam-bathymetry data collected in the Bering Sea during U.S. Geological Survey - Coastal and Marine Geology Program cruise MGL1111 aboard the R/V Marcus G. Langseth. The depth values were extracted from gridded data which were reduced for position, elevation, orientation, water-column sound-speed, and refraction effects.
thumbnail
High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006, offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and both were recorded with a Triton SB-Logger.
thumbnail
High-resolution single-channel minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006 offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and recorded with a Triton SB-Logger.
thumbnail
This dataset consists of short-term (~32 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1978 and 2010. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate short-term rates.
thumbnail
This dataset consists of short-term (~31 years) shoreline change rates for the north coast of Alaska between the Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2010. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate short-term rates.
thumbnail
Bathymetric change grids covering the periods of time from 1934 to 2011, from 2011 to 2018, and from 1934 to 2018 are presented. The grids cover a portion of the Mokelumne River, California, starting at its terminus at the San Joaquin River and moving upriver to the confluences of the north and south branches of the Mokelumne. Positive grid values indicate accretion, or a shallowing of the surface bathymetric surface, and negative grid values indicate erosion, or a deepening of the bathymetric surface. Bathymetry data sources include the U.S. Geological Survey, California Department of Water Resources, and NOAA's National Ocean Service.
thumbnail
Bathymetric change grids covering the periods of time from 1992 to 1998 and from 1994 to 2004 are presented. The grids cover a portion of the Sacramento River near Rio Vista, California, extending partially upstream on Cache and Steamboat sloughs by the Ryer Island Ferry, as well as continuing up the Sacramento River towards Isleton. Positive grid values indicate accretion, or a shallowing of the surface bathymetric surface, and negative grid values indicate erosion, or a deepening of the bathymetric surface. Bathymetry data sources include the U.S. Army Corps of Engineers, California Department of Water Resources, and NOAA�s National Ocean Service.
thumbnail
This part of DS 781 presents data for the transgressive contours of the Punta Gorda to Point Arena, California, region. The vector data file is included in the "TransgressiveContours_PuntaGordaToPointArena.zip," which is accessible from https://doi.org/10.5066/P9PNNI9H. As part of the USGS's California State Waters Mapping Project, a 50-m grid of sediment thickness for the seafloor within the 3-nautical mile limit between Punta Gorda and Point Arena was generated from seismic-reflection data collected between 2010 and 2012, and supplemented with geologic structure (fault) information following the methodology of Wong (2012). Water depths determined from bathymetry data were added to the sediment thickness data to...
thumbnail
The U.S. Geological Survey in cooperation with the Grand River Dam Authority completed a high-resolution multibeam bathymetric survey to compute a new capacity and surface-area table. The capacity and surface-area tables describe the relation between the elevation of the water surface and the volume of water that can be impounded at each given water-surface elevation. The capacity and surface area of Grand Lake O’ the Cherokees were computed from a Triangular Irregular Network (TIN) surface created in Global Mapper Version 21.0.1. The TIN surface was created from three datasets: (1) a multibeam bathymetric survey of Grand Lake O’ the Cherokees in 2019 (Hunter and others 2020), (2) a 2017 USGS bathymetric survey...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Bald Point State Park, CMGP, Coastal and Marine Geology Program, DSAS, Digital Shoreline Analysis System, All tags...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...


map background search result map search result map MGL1109centerdepth.shp: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, along-track center-beam depths extracted from 100-meter gridded data in shapefile format, geographic coordinates MGL1111centerdepth.shp: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, along-track center-beam depths extracted from 100-meter gridded data in shapefile format, geographic coordinates Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Louisiana Shorelines of the Florida north (FLnorth) coastal region used in shoreline change analysis Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for central North Carolina (NCcentral) Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape Bathymetric change analyses of the southernmost portion of the Mokelumne River, California, from 1934 to 2018 Bathymetric change analyses of the Sacramento River near Rio Vista, California, and the junction of Cache and Steamboat sloughs, from 1992 to 2004 Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Minisparker seismic-reflection data from field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Transgressive Contours--Punta Gorda to Point Arena, California Data release of Bathymetric Map, Surface Area, and Capacity of Grand Lake O' the Cherokees, Northeastern Oklahoma, 2019 Simulation and visualization of coastal tsunami impacts from the SAFRR tsunami source - Maximum tsunami elevation model of Half Moon Bay, California Airborne magnetic and radiometric survey of the Wet Mountains and surrounding region, Custer and Fremont Counties, south-central Colorado, 2021 Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance (NMR) data collected in 2021 Airborne magnetic survey, northwestern Minnesota, 2021 A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s Airborne radiometric flight line data, western Arkansas, 2022 Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Simulation and visualization of coastal tsunami impacts from the SAFRR tsunami source - Maximum tsunami elevation model of Half Moon Bay, California Bathymetric change analyses of the southernmost portion of the Mokelumne River, California, from 1934 to 2018 Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for central North Carolina (NCcentral) Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance (NMR) data collected in 2021 Bathymetric change analyses of the Sacramento River near Rio Vista, California, and the junction of Cache and Steamboat sloughs, from 1992 to 2004 Minisparker seismic-reflection data from field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Airborne magnetic and radiometric survey of the Wet Mountains and surrounding region, Custer and Fremont Counties, south-central Colorado, 2021 Data release of Bathymetric Map, Surface Area, and Capacity of Grand Lake O' the Cherokees, Northeastern Oklahoma, 2019 Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape Airborne radiometric flight line data, western Arkansas, 2022 Transgressive Contours--Punta Gorda to Point Arena, California A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Louisiana Airborne magnetic survey, northwestern Minnesota, 2021 Shorelines of the Florida north (FLnorth) coastal region used in shoreline change analysis Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 MGL1109centerdepth.shp: Multibeam bathymetry data collected by the U.S. Geological Survey in the Gulf of Alaska in 2011 during cruise MGL1109, along-track center-beam depths extracted from 100-meter gridded data in shapefile format, geographic coordinates MGL1111centerdepth.shp: Multibeam bathymetry data collected by the U.S. Geological Survey in the Bering Sea in 2011 during cruise MGL1111, along-track center-beam depths extracted from 100-meter gridded data in shapefile format, geographic coordinates