Skip to main content
Advanced Search

Filters: Tags: {"type":"LCC Project Category"} (X) > partyWithName: Lucas Fortini (X)

12 results (42ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=LCC Project Category )
View Results as: JSON ATOM CSV
Climate velocity is a concept derived from the intersection between ecology and climate change. It attempts to summarize the rate of climate change on a spatial scale as a movement rate (usually in units of kilometer per year) that a species would need to maintain to remain in its current climatological niche in the face of climate change. We now have downscaled climate models for the main Hawaiian Islands. In conjunction with the rainfall atlas of contemporary climate we have the information to calculate climate velocity for Hawaii, providing a useful index of the rate of climate change for conservation and resource managers. The goal of this project was to produce climate velocity maps for the seven main Hawaiian...
As the impacts of global climate change on species are increasingly evident, there is a clear need to adapt conservation efforts worldwide. Species vulnerability assessments (VAs) are increasingly used to summarize all relevant information to determine a species’ potential vulnerability to climate change and are frequently the first step in informing climate adaptation efforts. VAs commonly integrate multiple sources of information by utilizing a framework that distinguishes factors relevant to species exposure, sensitivity, and adaptive capacity. However, this framework was originally developed for human systems, and its use to evaluate species vulnerability has serious practical and theoretical limitations. By...
Recent studies show that past and ongoing environmental changes have been substantial and have likely already affected conservation efforts in Hawaii. Much of the state has experienced substantial drying, including decreases in mean annual precipitation since the 1920s, longer rainless periods, and decreasing stream flow. Temperatures have been increasing in the state for the last 40 years, especially at higher elevations where most native habitats and species currently persist. Unfortunately there are few long term monitoring efforts that allow us to understand plant species responses to these past, ongoing and future shifts in environmental conditions. Consequently, we know little about how environmental shifts...
· Anticipating potential shifts in plant communities has been a major challenge in climate-change ecology. In the State of Hawaii, where conservation efforts tend to be habitat focused, the lack of projections of vegetation shifts under future climate is a major knowledge gap for developing management actions for climate-change mitigation and adaptation.· As a first approximation, we have modeled potential shifts of terrestrial vegetation across the Hawaiian landscape between now and the end of this century. Our approach relies on modeling the relation between current climate and the distribution of broad climatically determined moisture zones (MZs; for example, wet, mesic, and dry areas) that form the...
thumbnail
Hawaiian forest birds are imperiled, with fewer than half the original > 40 species remaining extant. Recent studies document ongoing rapid population decline and project complete climate-based range losses for the critically endangered Kaua’i endemics ‘akeke’e (Loxops caeruleirostris) and ‘akikiki (Oreomystis bairdi) by end-of-century due to projected warming. Climate change facilitates the upward expansion of avian malaria into native high elevation forests where disease was historically absent. While intensified conservation efforts attempt to safeguard these species and their habitats, the magnitude of potential loss and the urgency of this situation require all conservation options to be seriously considered....
Hawaiian forest birds are imperiled, with fewer than half the original >40 species remaining extant. Recent studies document ongoing rapid population decline and project complete climate‐based range losses for the critically endangered Kaua’i endemics ‘akeke’e (Loxops caeruleirostris) and ‘akikiki (Oreomystis bairdi) by end‐of‐century due to projected warming. Climate change facilitates the upward expansion of avian malaria into native high elevation forests where disease was historically absent. While intensified conservation efforts attempt to safeguard these species and their habitats, the magnitude of potential loss and the urgency of this situation require all conservation options to be seriously considered....
thumbnail
In Hawaiʽi and elsewhere, research efforts have focused on two main approaches to determine the potential impacts of climate change on individual species: estimating species vulnerabilities and projecting responses of species to expected changes. We integrated these approaches by defining vulnerability as the inability of species to exhibit any of the responses necessary for persistence under climate change (i.e., tolerate projected changes, endure in microrefugia, or migrate to new climate-compatible areas, but excluding evolutionary adaptation). To operationalize this response-based definition of species vulnerability within a landscape-based analysis, we used current and future climate envelopes for each species...
For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21%...
thumbnail
Past analysis has shown that temperature-dependent avian malaria is likely to reduce overall available Hawaiian forest bird habitat with temperature increases. We used a comprehensive database of forest bird sightings (over 42,000 points), the most up to date regional climate projections and state-of-the-art ensemble species distribution models to project shifts in distribution of all Hawaiian forest bird species due to climate change. Our results show that all forest bird species are expected to suffer large range losses by end of this century with single island endemics at a greater risk than more widespread species. Because most species require structurally complex forest habitat that may take decades to develop,...
Besides coral, Hawaiian forest birds are arguably one of the clearest examples of species vulnerable to climate change. A wealth of studies has recently detailed how both ongoing and projected warming allows for avian malaria to spread at higher elevation areas where most remaining native bird species persist. Temperature is a critical factor for the development of both the disease (Plasmodium relictum) and its vector (Culex quinquefasciatus). As such, their distribution and abundance across the landscape seem to vary across the landscape in response to changing monthly, seasonal and annual conditions. Standard and novel vector control options are increasingly being considered to safeguard forest birds from the...
In conservation, one challenge of climate change adaptation is that acting on projected long-term climatic threats requires two ‘leaps’ by managers: 1) Acting on climate-based information which rarely is considered by managers; and 2) Acting on projected impacts that have not yet materialized. A broader challenge to Hawaiian plant conservation is the disconnect between the public and the wao akua where efforts to preserve native plants are often concentrated in. We have recently developed autonomous and high precision sensor arrays to monitor growth of individual native plants along with local environmental conditions at 30 minute intervals. The developed sensor array is unobtrusive, autonomous and when coupled...
Conservation efforts in isolated archipelagos such as Hawai’i often focus on habitat-based conservation and restoration efforts that benefit multiple species. Unfortunately, identifying locations where such efforts are safer from climatic shifts is still challenging. We aimed to provide a method to approximate these potential habitat shifts for similar data- and research-limited contexts. We modeled the relationship between climate and the potential distribution of native biomes across the Hawaiian archipelago to provide a first approximation of potential native biome shifts under end-of-century projected climate. Our correlative model circumvents the lack of data necessary for the parameterization of mechanistic...


    map background search result map search result map A landscape-based assessment of climate change vulnerability for native Hawaiian plants Shifting Hawaiian forest bird distribution under climate change and the need to consider novel conservation strategies Assessing the potential of translocating vulnerable forest birds  by searching for novel and enduring climatic ranges A landscape-based assessment of climate change vulnerability for native Hawaiian plants Shifting Hawaiian forest bird distribution under climate change and the need to consider novel conservation strategies Assessing the potential of translocating vulnerable forest birds  by searching for novel and enduring climatic ranges