Skip to main content
Advanced Search

Filters: Tags: {"type":"Organization"} (X) > Types: Map Service (X)

1,411 results (36ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Organization )
View Results as: JSON ATOM CSV
thumbnail
Climate projections for the southern Great Plains, and elsewhere in the U.S., indicate that a hotter future with changes in precipitation amount and seasonality is to be expected. As plants become stressed from these changes, wildfire risk increases. One of the most valuable approaches to reducing the impacts of wildfires is fuel reduction through prescribed burns. Fuel reduction helps minimize the destruction of ecological communities, threats of future flooding, and extensive damages by lessening the intensity of future wildfires. Although safe burning practices can largely minimize the risks, prescribed burns may bring some degree of concern among practitioners. The real and perceived risks may include bodily...
thumbnail
The distribution and abundance of cheatgrass, an invasive annual grass native to Eurasia, has increased substantially across the Intermountain West, including the Great Basin. Cheatgrass is highly flammable, and as it has expanded, the extent and frequency of fire in the Great Basin has increased by as much as 200%. These changes in fire regimes are associated with loss of the native sagebrush, grasses, and herbaceous flowering plants that provide habitat for many native animals, including Greater Sage-Grouse. Changes in vegetation and fire management have been suggested with the intent of conserving Greater Sage-Grouse. However, the potential responses of other sensitive-status birds to these changes in management...
thumbnail
Resource managers, policymakers, and scientists require tools to inform water resource management and planning. Information on hydrologic factors – such as streamflow, snowpack, and soil moisture – is important for understanding and predicting wildfire risk, flood activity, and agricultural and rangeland productivity, among others. Existing tools for modeling hydrologic conditions rely on information on temperature and precipitation. This project sought to evaluate different methods for downscaling global climate models – that is, taking information produced at a global scale and making it useable at a regional scale, in order to produce more accurate projections of temperature and precipitation for the Pacific...
thumbnail
Mean modeled snow-water-equivalent (meters) on February 20, the date of peak basin-integrated mean modeled snow-water-equivalent (meters) for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
UW_Olallie_photo_metadata & image files: These are the raw timelapse photographs. The date/time stamp is inaccurate for the camera deployed in the open (at the SNOTEL) due to a programming error. This timestamp is one day early (i.e., subtract 1 day from the timestamp when using these data). Also available is metadata for two timelapse cameras and their associated snow depth poles (two visible in each camera's field of view) deployed at Olallie Meadows SNOTEL during water year 2015. One camera was deployed in the open area that is the Olallie Meadows SNOTEL station (the snow pillow is in the field of view). The other camera was deployed in the adjacent forest, approximately 60 m to the southeast of the SNOTEL....
thumbnail
The percentage difference between mean modeled snow-water-equivalent (meters) on April 1 for the reference (1989-2011) climate period and mean modeled snow-water-equivalent on April 1 for the T4 climate change scenario. Reference period: the period 1989 – 2011 for the Upper Deschutes River Basin domain, for which observed historical meteorology is used for model input. T4 scenario: the observed historical (reference period) meteorology is perturbed by adding +4°C to each daily temperature record in the reference period meteorology, and this data is then used as input to the model.
thumbnail
Wildfire, drought, and insects are reshaping forests in the Western United States in a manner that is being exacerbated by warming temperatures. Disturbance events such as these can significantly alter the amount of land that is covered by forest in an area or region. Consequently, changes in forest cover from disturbance can impact water runoff conditions leading to dangerous flooding, erosion, and water quality issues. These events can be costly for society. In response, many land managers are using forest thinning and prescribed burning practices to reduce disturbance impacts, especially those that are caused by high-severity wildfire. In contrast to the wealth of research on the advantages of forest thinning...
thumbnail
Data points intensively sampling 46 North American biomes were used to predict the geographic distribution of biomes from climate variables using the Random Forests classification tree. Techniques were incorporated to accommodate a large number of classes and to predict the future occurrence of climates beyond the contemporary climatic range of the biomes. Errors of prediction from the statistical model averaged 3.7%, but for individual biomes, ranged from 0% to 21.5%. In validating the ability of the model to identify climates without analogs, 78% of 1528 locations outside North America and 81% of land area of the Caribbean Islands were predicted to have no analogs among the 46 biomes. Biome climates were projected...
thumbnail
Forests are of tremendous ecological and economic importance. They provide natural places for recreation, clean drinking water, and important habitats for fish and wildlife. However, the warmer temperatures and harsher droughts in the west that are related to climate change are causing die-offs of many trees. Outbreaks of insects, like the mountain pine beetle, that kill trees are also more likely in warmer, drier conditions. To maintain healthy and functioning forest ecosystems, one action forest managers can take is to make management decisions that will help forests adapt to future climate change. However, adaptation is a process based on genetic change and few tools are currently available for managers to use...
thumbnail
Overview Fishes of the Adirondack Park face numerous challenges. Summer Suckers are the only endemic vertebrate yet have suffered major range reductions, so we are analyzing their genome, body shape, and spawning timing to verify their uniqueness and current range. Warming patterns are expected to shift their spawning earlier, potentially intersecting with their recent ancestor (White Suckers) to create hybridization and reduced reproductive success. Minnows are more diverse in the Adirondacks, and our analyses suggest that they show three major distributional patterns that reflect post-glacial colonization and temperature preferences. We are analyzing data from hundreds of lakes to discern the rules that structure...
thumbnail
Drought is a common consequence of climate variability in the south-central U.S., but they are expected to occur more often and become more intense with climate change. Natural resource managers can improve their planning efforts with advance warnings of impending drought. Using input from resource managers in the Chickasaw Nation, this research team previously created models that forecast droughts up to 18 months in advance with information about their expected timing and intensity. Developed for all climate divisions in Louisiana, New Mexico, Oklahoma, and Texas, these drought models rely on input from predictor variables associated with global weather patterns like El Niño and La Niña. However, it is unclear...
thumbnail
Invasive species establish outside of their native range, spread, and negatively impact ecosystems and economies. As temperatures rise, many invasive plants can spread into regions that were previously too cold for their survival. For example, kudzu, ‘the vine that ate the south’, was previously limited to mid-Atlantic states, but has recently started spreading in New Jersey and is expected to become invasive farther north. While scientists know of many of the invasive species expanding into the northeastern U.S., they do not know where those species are likely to become abundant and how they will impact vulnerable native ecosystems due to climate change. There are also currently no strategies to manage emerging...
thumbnail
The South Central Climate Adaptation Science Center (CASC) has several Communities of Practice (CoPs) focused on resource manager needs across the region (e.g. understanding at-risk species and ecosystems, building resilient coastal ecosystems, extreme weather and climate change, etc.). Each CoP has expertise in the subject matter and has been working on projects that are relevant to the resource community, including conducting literature reviews and small-scale pilot projects. The current research project will leverage the expertise of the existing CoPs to enhance the content available through the Conservation and Adaptation Resources Toolbox (CART) as identified through the partnership between the South Central...
thumbnail
This folder contains 7 excel files with data from a household questionnaire survey (N=199) conducted for the Marshall Islands Climate and Migration project. The fieldwork took place in March and April 2017. Besides the excel file, the folder also contains the original questionnaire in PDF format. The questionniare looked at livelihood, perceptions of climate change and ecosystem services and migration behaviour. The excel files are 1 file for the main questionnaire data and 6 additional files with data from tables in the questionnaire. Each variable in the questionnaire starts with a Leter (A-K) and a number. This refers to the question number in the questionnaire. The databases uses 3 codes for missing values:...
thumbnail
The Pacific Islands Climate Adaptation Science Center (PI CASC) supports sustainability and climate adaptation in communities across the Pacific Islands by providing natural and cultural resource managers with access to actionable science specific to the region. PI CASC is hosted by the University of Hawaiʻi at Mānoa (UHM) with consortium partners at the University of Hawaiʻi at Hilo (UHH) and the University of Guam (UOG). During the period of 2019 - 2024, the PI CASC consortium will strive to i) build resiliency and sustainability in ecosystems and communities to climate change impacts; ii) strive to develop the best actionable climate science, while maintaining a non-advocacy stance; and iii) apply the elements...
thumbnail
PI-CASC regularly interacts with a diverse and extensive network of stakeholder organizations at federal, territory, state, county, and local levels across the Pacific Region, supporting communication and iterative problem solving between researchers, managers, and decision makers. In addition to these partnerships, PI-CASC has two important ongoing collaborative initiatives. Pacific Islands-Alaska CASC collaboration The PI-AK CASC collaboration is aimed at bringing together scientist and resource managers from the Pacific and Alaska regions to share insights on related climate adaptation challenges in Ridge-to-Reef (R2R) and Icefield-to-Ocean (I2O) ecosystems. Similarities in landscapes and communities in these...
thumbnail
Appropriate ecological indicators of climate change can be used to measure concurrent changes in ecological systems, inform management decisions, and potentially to project the consequences of climate change. However, many of the available indicators for North American birds do not account for imperfect observation. We proposed to use correlated-detection occupancy models to develop indicators from the North American Breeding Bird Survey data. The indicators were used to test hypotheses regarding changes in range and distribution of breeding birds. The results will support the Northeast Climate Science Center’s Science Agenda, including the science priority: researching ecological vulnerability and species response...
thumbnail
The Northwest Climate Adaptation Science Center (NW CASC) organizes an annual Deep Dive into an emerging climate risk. The NW CASC convenes researchers, practitioners and students to assess the state of knowledge and practice associated with managing that risk. Each Deep Dive aims to facilitate community development of an Actionable Science Agenda that outlines knowledge gaps and research needs and identifies opportunities to advance adaptation by linking science and practice. Deep Dive topics include managing western Washington wildfire risk in a changing climate, managing climate-driven post-fire vegetation transitions, and managing climate change effects on stream drying in the Northwest. To learn more about...
thumbnail
Scientists, planners, policy makers and other decision-makers in the South Central U.S. want to understand the potential impacts of changes in climate, precipitation, and land-use patterns on natural and cultural resources. Though the potential impacts of climate change can be modeled to help decision-makers plan for future conditions, these models rarely incorporate changes in land-use that may occur. Climate change and land-use change are often linked, as shifts in precipitation and temperature can alter patterns in human land-use activities, such as agriculture. This project sought to address this gap by developing new software tools that enable stakeholders to quickly develop custom, climate-sensitive land-use...


map background search result map search result map Improving Projections of Hydrology in the Pacific Northwest Avian Indicators of Climate Change Based on the North American Breeding Bird Survey Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Modeled snow-water-equivalent, percent difference between historical and projected April 1 values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Modeled snow-water-equivalent, projected seasonal peak values under T4 climate change scenario, Upper Deschutes River Basin, Oregon [full and clipped versions] Timelapse photos at SNOTEL station, locations, and associated metadata, Ollalie Meadows, Wash., 2015 North American vegetation model data for land-use planning in a changing climate: Using Genetic Information to Understand Drought Tolerance and Bark Beetle Resistance in Whitebark Pine Forests Building a Decision-Support Tool for Assessing the Impacts of Climate and Land Use  Change on Ecological Processes RMI Questionnaire data of the Marshall Islands Climate and Migration Project Streamflow Permanence Probability rasters, 2004-2011, Version 2.0 (PROSPER) Identifying Vulnerable Ecosystems and Supporting Climate-Smart Strategies to Address Invasive Species Under Climate Change Pacific Islands Climate Adaptation Science Center Consortium - Hosted by University of Hawai‘i, Mānoa (2019-2024) Regional Collaborations NW CASC Deep Dives: Actionable Science Agendas for Emerging Climate Risks Future of Fire in the South Central: Towards a National Synthesis of Wildland Fire Under a Changing Climate The Role of Forest Structure in Regulating Water Availability and Implications for Natural Resources and Ecosystem Function Expanding the Conservation and Adaptation Resources Toolbox (CART) to the South Central United States Adirondack Fish Conservation: Safeguarding Summer Suckers, Understanding Minnow Diversity, Limiting Smallmouth Bass Invasions, Developing Climate-Adapted Stocking Improving Predictive Drought Models with Sensitivity Analysis Timelapse photos at SNOTEL station, locations, and associated metadata, Ollalie Meadows, Wash., 2015 Using Genetic Information to Understand Drought Tolerance and Bark Beetle Resistance in Whitebark Pine Forests Improving Predictive Drought Models with Sensitivity Analysis The Role of Forest Structure in Regulating Water Availability and Implications for Natural Resources and Ecosystem Function North American vegetation model data for land-use planning in a changing climate: RMI Questionnaire data of the Marshall Islands Climate and Migration Project NW CASC Deep Dives: Actionable Science Agendas for Emerging Climate Risks Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Streamflow Permanence Probability rasters, 2004-2011, Version 2.0 (PROSPER) Improving Projections of Hydrology in the Pacific Northwest Building a Decision-Support Tool for Assessing the Impacts of Climate and Land Use  Change on Ecological Processes Future of Fire in the South Central: Towards a National Synthesis of Wildland Fire Under a Changing Climate Expanding the Conservation and Adaptation Resources Toolbox (CART) to the South Central United States Adirondack Fish Conservation: Safeguarding Summer Suckers, Understanding Minnow Diversity, Limiting Smallmouth Bass Invasions, Developing Climate-Adapted Stocking Identifying Vulnerable Ecosystems and Supporting Climate-Smart Strategies to Address Invasive Species Under Climate Change Avian Indicators of Climate Change Based on the North American Breeding Bird Survey Pacific Islands Climate Adaptation Science Center Consortium - Hosted by University of Hawai‘i, Mānoa (2019-2024) Regional Collaborations