Skip to main content
Advanced Search

Filters: Tags: {"type":"Place"} (X) > Date Range: {"choice":"year"} (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: Natural Hazards (X)

367 results (74ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Place )
View Results as: JSON ATOM CSV
This data release documents proposed updates to geologic inputs (faults) for the upcoming 2023 National Seismic Hazard Model (NSHM). This version (1.0) conveys differences between 2014 NSHM fault sources and those recently released in the earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 data release by Hatem et al. (2021). A notable difference between the 2014 and 2023 datasets is that slip rates are provided at points for 2023 instead of generalized along the entire fault section length as in 2014; consequently, slip rates are not provided for fault sections in the draft 2023 dataset. Geospatial data (shapefile, kml and geojson) are provided in this data release with...
thumbnail
Time series data of water surface elevation and wave height were acquired at ten locations for 517 days (in three separate deployments) off the north coast of Roi-Namur Island, Kwajalein Atoll, Marshall Islands, in support of a study on the coastal circulation patterns and the transformation of surface waves over the coral reefs. The relative placement of sensors on the reefs were as follows: ROI13W1 and ROI13E1 – fore reef ROI13W2 and ROI13E2 – outer reef flat ROI13W1 and ROI13E1 – middle reef flat ROI13W1 and ROI13E1 – inner reef flat
thumbnail
Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the response of a delta system to changes in sediment supply. The U.S. Geological Survey (USGS) developed an integrated research program aimed at understanding the ecosystem responses following dam removal. The research program included repeated surveys of beach topography, nearshore bathymetry, and surface sediment grain size to quantify changes in delta morphology...
thumbnail
Note: This data release has been superseded, available here: https://doi.org/10.5066/P9MYL7WJ This data release contains processed high-resolution multichannel sparker seismic-reflection (MCS) data that were collected aboard Humboldt State University’s R/V Coral Sea in October of 2018 on U.S. Geological Survey cruise 2018-658-FA on the shelf and slope between Cape Blanco, Oregon, and Cape Mendocino, California. MCS data were collected to characterize quaternary deformation and sediment dynamics along the southern Cascadia margin.
thumbnail
This dataset consists of physics-based Delft3D model and Delwaq model input files used in modeling sediment deposition and concentrations around the coral reefs of west Maui, Hawaii. The Delft3D models were used to simulate waves and currents under small (SC1) and large (‘SC2’) wave conditions for current stream discharge (‘Alt1’) and stream discharge with watershed restoration (‘Alt3’). Delft3D model results were subsequently used as forcing conditions for Delwaq models to simulate sediment transport and dispersion. The Delwaq models were used to simulate sediment transport and concentrations under the same two wave and stream discharge scenarios. The Delwaq models were run using forcing conditions generated by...
thumbnail
RBRduo pressure and temperature sensors, mounted on aluminum frames, were moored in shallow (< 6 m) water depths in Skagit and Bellingham Bays, Washington, USA, from December 2017 to February 2018, to capture wave heights and periods. Continuous pressure fluctuations are transformed into surface-wave observations of wave heights, periods, and frequency spectra at 30-minute intervals.
thumbnail
High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006, offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and both were recorded with a Triton SB-Logger.
thumbnail
Geochemical analyses of authigenic carbonates, bivalves, and pore fluids were performed on samples collected from seep fields along the Queen Charlotte Fault, a right lateral transform boundary that separates the Pacific and North American tectonic plates. Samples were collected using grab samplers and piston cores, and were collected during three different research cruises in 2011, 2015, and 2017.
This data release includes approximately 1,032 km of marine single-channel seismic-reflection data collected by the U.S. Geological Survey on a research cruise (USGS survey 2014-632-FA) in July and August, 2014, between Point Sal and Refugio State Beach. The dataset includes 168 profiles, most of which were collected on tracklines roughly perpendicular to the coast at 1 km line spacing; additional profiles were collected on coast-parallel tie lines. These data were acquired to support the California Seafloor Mapping Program and USGS Geologic Hazards projects. Seismic-reflection data were collected using a minisparker system that creates an acoustic signal by discharging an electrical pulse between electrodes and...
thumbnail
This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The raw imagery used to create the DSM was acquired using a UAS fitted with a Ricoh...
thumbnail
This portion of the data release presents linescan images (photographs) from push cores collected from Loki's Castle and Favne vent fields, on the Mohns Ridge, in the Norwegian Sea. These data were Rcollected in 2018 and 2019 (USGS Field Activity 2018-691-DD and 2019-624-FA). Images were obtained from seventeen push cores at 50-micron (200 pixel per cm) resolution. Color images in 16-bit TIFF format are provided for each core segment, along with proprietary metadata files containing image scaling information.
thumbnail
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during the July 2021 unoccupied aerial system (UAS) surveys of the ocean beach at Fort Stevens State Park, OR, and Benson Beach at Cape Disappointment State Park, WA. Eighteen temporary ground control points (GCPs) were distributed throughout the survey area to establish survey control. The GCPs consisted of a combination of small square tarps with black-and-white cross patterns and "X" marks placed on the ground using temporary chalk. The GCP positions were measured using dual-frequency post-processed kinematic (PPK) GPS with corrections...
thumbnail
The 1983-2018 Puʻuʻōʻō eruption, on the East Rift Zone of Kīlauea volcano, consisted of many different episodes and several phases of lava flows threatening residential areas (Heliker and Mattox 2003; Orr and others 2015). One of these crises occurred in 2014-2015, when lava erupting from Puʻuʻōʻō advanced north of the rift zone, towards the town of Pāhoa (Poland and others 2016; Brantley and others 2019). This slow-moving crisis unfolded over approximately four months, as pāhoehoe lava gradually flowed towards the town. In the end, the lava flow fortunately stalled at the edge of the residential area, destroying only one home. During the crisis, geologists at the U.S. Geological Survey (USGS) Hawaiian Volcano...
thumbnail
Management efforts of the tidally-restricted Herring River in Wellfleet, MA include research to understand pre-restoration sediment conditions. Submerged multiparameter sondes that measure optical turbidity were deployed at four sites landward and seaward of the Herring River restriction. Periodically, the sites were visited and additional turbidity measurements were collected with a handheld multiparameter sonde, and water samples were collected for determination of suspended-sediment concentration (SSC). The handheld turbidity measurements were regressed against SSC using a repeated median regression to determine a calibration curve for calibrating the turbidity time-series data to SSC. The SSC derived from the...
thumbnail
This data release contains coastal wetland synthesis products for the state of Connecticut. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, wave power, and exposure potential to environmental health stressors are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 5, which is one of 18 similarly sized segments of the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a glaciated terrain that is topographically and texturally diverse. Quadrangle 5 includes the shallow, rippled, coarse-grained sandy crest and upper eastern and western flanks of southern Stellwagen Bank, its fine-grained sandy...
thumbnail
On February 14th, 2019, a strong atmospheric river storm (AR4 on the Atmospheric River scale of Ralph et al., 2019) struck California. The heavy rainfall caused landslides in both northern and southern California (Hatchett et al., 2020). This data release includes two subsets of mapped shallow landslide source locations in the vicinity of western Riverside County, California, where sufficient post-event imagery was available within Google Earth (image date: August 15, 2019). The data release includes: 1) .csv files containing the point locations of shallow hillslope landslides, 2) .zip files containing shapfiles (.shp) of the mapped study areas. Ralph, F., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson,...
thumbnail
A model of the lower seismogenic depth distribution of earthquakes in the western United States was developed to support models for seismic hazard assessment that will be included in the 2023 USGS National Seismic Hazard Model. This data release presents a recalibration using the hypocentral depths of events M>1 from the Advanced National Seismic System Comprehensive Earthquake Catalog from 1980 to 2021. For higher precision and better resolution in the model, the data were supplemented with seismicity from southern California that was relocated by Hauksson and others (2012). Along the San Andreas Fault, the deepest seismogenic depths are located at 23 km around the Cholame segment, whereas the shallowest depths...


map background search result map search result map Swell-filtered, high-resolution seismic-reflection data collected between Shelter Cove and Fort Bragg (northern Califrnia) during field activity B-5-10-NC from 09/20/2010 to 10/01/2010 Bathymetry and topography data from the Elwha River delta, Washington, May 2011 Geochemical analysis of seeps along the Queen Charlotte Fault Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Wave observations from nearshore bottom-mounted pressure sensors in Skagit and Bellingham Bays, Washington, USA from Dec 2017 to Feb 2018 Roi-Namur Island, Marshall Islands, wave and water level data, 2013-2015 Multichannel sparker seismic reflection data of USGS field activity 2018-658-FA collected between Cape Blanco and Cape Mendocino from 2018-10-04 to 2018-10-18 Digital surface model (DSM) for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Data release for the lower seismogenic depth model of western U.S. earthquakes Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Ground control point locations for UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021 Swath bathymetry 13-m-cell-size grid of quadrangle 5 on Stellwagen Bank offshore of Boston, Massachusetts collected by the U.S. Geological Survey aboard the CCGS Frederick G. Creed from 1994-1996 Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA Photographs of push cores from Loki's Castle and Favne vent fields, Mohns Ridge Parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in watershed soil and reef sediment at Olowalu, Maui, 2022 Geospatial characterization of salt marshes in Connecticut (ver. 2.0, April 2024 Landslides triggered by the February 2019 atmospheric river storm, western Riverside County, California, USA Stochastic lava flow forecasting code used during the 2014-2015 Pāhoa lava flow crisis, Kīlauea Volcano, Island of Hawai‘i Bathymetry and topography data from the Elwha River delta, Washington, May 2011 Digital surface model (DSM) for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA Roi-Namur Island, Marshall Islands, wave and water level data, 2013-2015 Ground control point locations for UAS surveys of the beaches at Fort Stevens State Park, OR, and Cape Disappointment State Park, WA, July 2021 Parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in watershed soil and reef sediment at Olowalu, Maui, 2022 Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Swath bathymetry 13-m-cell-size grid of quadrangle 5 on Stellwagen Bank offshore of Boston, Massachusetts collected by the U.S. Geological Survey aboard the CCGS Frederick G. Creed from 1994-1996 Landslides triggered by the February 2019 atmospheric river storm, western Riverside County, California, USA Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Stochastic lava flow forecasting code used during the 2014-2015 Pāhoa lava flow crisis, Kīlauea Volcano, Island of Hawai‘i Geospatial characterization of salt marshes in Connecticut (ver. 2.0, April 2024 Photographs of push cores from Loki's Castle and Favne vent fields, Mohns Ridge Multichannel sparker seismic reflection data of USGS field activity 2018-658-FA collected between Cape Blanco and Cape Mendocino from 2018-10-04 to 2018-10-18 Geochemical analysis of seeps along the Queen Charlotte Fault Data release for the lower seismogenic depth model of western U.S. earthquakes Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0