Skip to main content
Advanced Search

Filters: Tags: {"type":"Place"} (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > Categories: Data (X) > partyWithName: Natural Hazards (X)

884 results (23ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Schemes
Tags (with Type=Place )
View Results as: JSON ATOM CSV
This data release documents proposed updates to geologic inputs (faults) for the upcoming 2023 National Seismic Hazard Model (NSHM). This version (1.0) conveys differences between 2014 NSHM fault sources and those recently released in the earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 data release by Hatem et al. (2021). A notable difference between the 2014 and 2023 datasets is that slip rates are provided at points for 2023 instead of generalized along the entire fault section length as in 2014; consequently, slip rates are not provided for fault sections in the draft 2023 dataset. Geospatial data (shapefile, kml and geojson) are provided in this data release with...
thumbnail
Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the response of a delta system to changes in sediment supply. The U.S. Geological Survey (USGS) developed an integrated research program aimed at understanding the ecosystem responses following dam removal. The research program included repeated surveys of beach topography, nearshore bathymetry, and surface sediment grain size to quantify changes in delta morphology...
thumbnail
High-resolution topographic surveys were conducted at two pools on the Carmel River between 2014 and 2019 using a survey-grade total station. The Dam Reach pool (DMPOOL) is located within the Dam Reach, approximately 450 meters downstream of the former site of the San Clemente Dam. The Sleepy Hollow pool (SHPOOL) is located within the Sleepy Hollow reach, approximately 2.25 kilometers downstream of the former site of the San Clemente Dam. Both pools were surveyed in 2014, 2015, 2016, 2017, and 2019 using a total station, in conjunction with the channel cross-section surveys also conducted as part of this study (see accompanying file within this data release for topographic survey transect data). For the 2015 survey,...
thumbnail
This data release supersedes version 1, published in 2017 under https://doi.org/10.5066/F74M93HF. Please see Version_History_P9HG8UDS.txt below for more information. This dataset contains the easting, northing, and elevation values of the river-right and river-left transect endpoint reference benchmarks (RBM and LBM) from survey transects at 10 survey reaches along the Carmel River, central California. Topographic surveys were completed on these transects during eight summer surveys (in 2013, 2014, 2015, 2016, 2017, 2019, 2020 and 2021). See accompanying file within this data release for elevation measurements. All data were collected in NAD83 UTM10N horizontal coordinates and NAVD88 Geoid 12B vertical coordinates,...
thumbnail
This dataset consists of physics-based Delft3D model and Delwaq model input files used in modeling sediment deposition and concentrations around the coral reefs of west Maui, Hawaii. The Delft3D models were used to simulate waves and currents under small (SC1) and large (‘SC2’) wave conditions for current stream discharge (‘Alt1’) and stream discharge with watershed restoration (‘Alt3’). Delft3D model results were subsequently used as forcing conditions for Delwaq models to simulate sediment transport and dispersion. The Delwaq models were used to simulate sediment transport and concentrations under the same two wave and stream discharge scenarios. The Delwaq models were run using forcing conditions generated by...
thumbnail
RBRduo pressure and temperature sensors, mounted on aluminum frames, were moored in shallow (< 6 m) water depths in Skagit and Bellingham Bays, Washington, USA, from December 2017 to February 2018, to capture wave heights and periods. Continuous pressure fluctuations are transformed into surface-wave observations of wave heights, periods, and frequency spectra at 30-minute intervals.
thumbnail
Conductivity-Temperature-Depth (CTD) profile data were collected along transects and across study areas of west Hawaii Island between 2010 and 2014. Measurements were made over a range of tide and weather conditions and help characterize the spatial extent and variability in estuarine conditions across the reef when grouped by 1 to 2-hour survey period or by season.
thumbnail
Spatial measurements of water temperature, specific conductance, salinity, pH, and dissolved oxygen between 0.25 and 0.50 m water depth were collected every 10-seconds along and across shore at 12 principal study areas along west Hawaii Island. Measurements were made between 2010 and 2013 during different seasons and tide states over the course of 1.0 to 2.5 hours to evaluate the spatial and temporal extent of water properties that influence coral reef health and coral reef habitat availability.
thumbnail
Time-series data of water level, water temperature, and salinity were collected at 10 locations along west Hawaii Island between 2010 and 2011 in nearshore coral reef settings. Conductivity-temperature-depth sensors were attached to fossil limestone, rock, or dead coral within otherwise healthy coral reef settings spanning water depths of 8 to 23 ft. Continuous measurements were made every 10 or 20 minutes.
thumbnail
High-resolution single-channel Chirp and minisparker seismic-reflection data were collected by the U.S. Geological Survey in September and October 2006, offshore Bolinas to San Francisco, California. Data were collected aboard the R/V Lakota, during field activity L-1-06-SF. Chirp data were collected using an EdgeTech 512 chirp subbottom system and were recorded with a Triton SB-Logger. Minisparker data were collected using a SIG 2-mille minisparker sound source combined with a single-channel streamer, and both were recorded with a Triton SB-Logger.
thumbnail
Geochemical analyses of authigenic carbonates, bivalves, and pore fluids were performed on samples collected from seep fields along the Queen Charlotte Fault, a right lateral transform boundary that separates the Pacific and North American tectonic plates. Samples were collected using grab samplers and piston cores, and were collected during three different research cruises in 2011, 2015, and 2017.
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This dataset contains projections for San Mateo County. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge. Methods and...
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This dataset contains projections from the Coastal Storm Modeling System (CoSMoS) for Santa Barbara County, north of Pt. Conception. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California...
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...


map background search result map search result map Bathymetry and topography data from the Elwha River delta, Washington, May 2011 Surface-water temperature, salinity, Ph, and dissolved oxygen data from nearshore coral reef locations along the west coast of Hawaii Island (2010-2013) Water level, temperature, and salinity time-series data from nearshore coral reef locations along the west coast of Hawaii Island (2010-2011) Geochemical analysis of seeps along the Queen Charlotte Fault Conductivity, temperature, and depth (CTD) data from nearshore coral reef locations along the west coast of Hawaii Island (2010-2014) Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 Wave observations from nearshore bottom-mounted pressure sensors in Skagit and Bellingham Bays, Washington, USA from Dec 2017 to Feb 2018 CoSMoS v3.1 - Santa Barbara County CoSMoS v3.1 flood hazard projections: 100-year storm in San Luis Obispo County CoSMoS v3.1 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 1-year storm in Santa Barbara County CoSMoS v3.1 - San Mateo County CoSMoS v3.1 flood depth and duration projections: 100-year storm in San Mateo County CoSMoS v3.1 ocean-currents hazards: average conditions in San Mateo County CoSMoS v3.1 flood depth and duration projections: average conditions in Santa Cruz County CoSMoS v3.1 ocean-currents hazards: average conditions in Monterey County Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Topographic survey transect endpoint coordinates along the Carmel River, central California, 2013 to 2021 (ver. 2.0, March 2022) High resolution topography for two pools on the Carmel River, central California, 2014 to 2019 Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Bathymetry and topography data from the Elwha River delta, Washington, May 2011 High resolution topography for two pools on the Carmel River, central California, 2014 to 2019 Chirp and minisparker seismic-reflection data of field activity L-1-06-SF collected offshore Bolinas to San Francisco, California from 2006-09-25 to 2006-10-03 CoSMoS v3.1 flood depth and duration projections: 100-year storm in San Mateo County CoSMoS v3.1 ocean-currents hazards: average conditions in San Mateo County CoSMoS v3.1 - San Mateo County CoSMoS v3.1 - Santa Barbara County CoSMoS v3.1 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 1-year storm in Santa Barbara County CoSMoS v3.1 flood depth and duration projections: average conditions in Santa Cruz County Wave observations from nearshore bottom-mounted pressure sensors in Skagit and Bellingham Bays, Washington, USA from Dec 2017 to Feb 2018 Conductivity, temperature, and depth (CTD) data from nearshore coral reef locations along the west coast of Hawaii Island (2010-2014) CoSMoS v3.1 flood hazard projections: 100-year storm in San Luis Obispo County Surface-water temperature, salinity, Ph, and dissolved oxygen data from nearshore coral reef locations along the west coast of Hawaii Island (2010-2013) CoSMoS v3.1 ocean-currents hazards: average conditions in Monterey County Geochemical analysis of seeps along the Queen Charlotte Fault Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0