Skip to main content
Advanced Search

Filters: Tags: Snow (X) > Types: Journal Citation (X)

11 results (170ms)   

View Results as: JSON ATOM CSV
Abstract The importance of snow and related cryospheric processes as an ecological factor has been recognized since at least the beginning of the twentieth century. Even today, however, many observations remain anecdotal. The research to date on cold-lands ecosystems results in scientists being unable to evaluate to what extent changes in the cryosphere will be characterized by abrupt changes in local and global biogeochemical cycles, and how these changes in seasonality may affect the rates and timing of key ecological processes. Studies of gas exchanges through snow have revealed that snow plays an important role in modulating wintertime soil biogeochemical processes, and that these can be the driving processes...
A monthly snow accumulation and melt model was used with monthly Precipitation-elevation Regressions on Independent Slopes Model (PRISM) temperature and precipitation data to generate time series of 1 April snow water equivalent (SWE) for 1900 through 2008 in the western United States. Averaged across the western United States, SWE generally was higher than long-term (1900?2008) average conditions during the periods 1900?25, 1944?55, and 1966?82; SWE was lower than long-term average conditions during the periods 1926?43, 1957?65, and 1984?2008. During the period 1900?2008, the temporal pattern in winter precipitation exhibited wetter-than-average and drier-than-average decadal-scale periods with no long-term increasing...
Although freeze–thaw cycles can alter soil physical properties and microbial activity, their overall impact on soil functioning remains unclear. This review addresses the effects of freeze–thaw cycles on soil physical properties, microorganisms, carbon and nutrient dynamics, trace gas losses and higher organisms associated with soil. I discuss how the controlled manipulation of freeze–thaw cycles has varied widely among studies and propose that, despite their value in demonstrating the mechanisms of freeze–thaw action in soils, many studies of soil freeze–thaw cycles have used cycle amplitudes, freezing rates and minimum temperatures that are not relevant to temperature changes across much of the soil...
Although freeze?thaw cycles can alter soil physical properties and microbial activity, their overall impact on soil functioning remains unclear. This review addresses the effects of freeze?thaw cycles on soil physical properties, microorganisms, carbon and nutrient dynamics, trace gas losses and higher organisms associated with soil. I discuss how the controlled manipulation of freeze?thaw cycles has varied widely among studies and propose that, despite their value in demonstrating the mechanisms of freeze?thaw action in soils, many studies of soil freeze?thaw cycles have used cycle amplitudes, freezing rates and minimum temperatures that are not relevant to temperature changes across much of the soil profile in...
Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A year-long simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine the soot deposition, followed by three simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced...
Volume-weighted mean concentrations of nitrate (NO3?), ammonium (NH4+), and sulfate (SO42?) in precipitation were compared at high-elevation sites in Colorado from 1992 to 1997 to evaluate emission source areas to the east and west of the Rocky Mountains. Precipitation chemistry was measured by two sampling methods, the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and snowpack surveys at maximum accumulation. Concentrations of NO3? and SO42? in winter precipitation were greater on the western slope of the Rockies, and concentrations of NO3? and NH4+ in summer precipitation were greater on the eastern slope. Summer concentrations in general were almost twice as high as winter concentrations....
Whole air drawn from four heights within the high elevation (3,340 m asl), deep, winter snowpack at Niwot Ridge, Colorado, were sampled into stainless steel canisters, and subsequently analyzed by gas chromatography for 51 volatile inorganic and organic gases. Two adjacent plots with similar snow cover were sampled, one over bare soil and a second one from within a snow-filled chamber where Tedlar/Teflon-film covered the ground and isolated it from the soil. This comparison allowed for studying effects from processes in the snowpack itself versus soil influences on the gas concentrations and fluxes within and through the snowpack. Samples were also collected from ambient air above the snow surface for comparison...
Although freeze?thaw cycles can alter soil physical properties and microbial activity, their overall impact on soil functioning remains unclear. This review addresses the effects of freeze?thaw cycles on soil physical properties, microorganisms, carbon and nutrient dynamics, trace gas losses and higher organisms associated with soil. I discuss how the controlled manipulation of freeze?thaw cycles has varied widely among studies and propose that, despite their value in demonstrating the mechanisms of freeze?thaw action in soils, many studies of soil freeze?thaw cycles have used cycle amplitudes, freezing rates and minimum temperatures that are not relevant to temperature changes across much of the soil profile in...
Dust deposition to mountain snow cover, which has increased since the late 19(th) century, accelerates the rate of snowmelt by increasing the solar radiation absorbed by the snowpack. Snowmelt occurs earlier, but is decoupled from seasonal warming. Climate warming advances the timing of snowmelt and early season phenological events (e.g., the onset of greening and flowering); however, earlier snowmelt without warmer temperatures may have a different effect on phenology. Here, we report the results of a set of snowmelt manipulations in which radiation-absorbing fabric and the addition and removal of dust from the surface of the snowpack advanced or delayed snowmelt in the alpine tundra. These changes in the timing...
The effect of snow cover on surface-atmosphere exchanges of nitrogen oxides (nitrogen oxide (NO) + nitrogen dioxide (NO2); note, here ?NO2? is used as surrogate for a series of oxidized nitrogen gases that were detected by the used monitor in this analysis mode) was investigated at the high elevation, subalpine (3,340 m asl) Soddie site, at Niwot Ridge, Colorado. Vertical (NO + NO2) concentration gradient measurements in interstitial air in the deep (up to ~2.5 m) snowpack were conducted with an automated sampling and analysis system that allowed for continuous observations throughout the snow-covered season. These measurements revealed sustained, highly elevated (NO + NO2) mixing ratios inside the snow. Nitrogen...
Much of the research on the chemistry of snow and surface waters of the western US, Europe, and Asia has been conducted in high-elevation catchments above treeline. Here we provide information on the solute content of the seasonal snowpack at the Soddie site on Niwot Ridge, Colorado, a subalpine site near treeline. We focus on the storage and release of both inorganic and organic solutes to the soils underneath the snowpack, and subsequent effects on the chemical and nutrient content of the underlying soil solution and the adjacent headwater stream. The concentration of inorganic nitrogen (N) stored in the seasonal snowpack at the Soddie site of about 11 μeq L−1 was on the upper end of values reported...