Skip to main content
Advanced Search

Filters: Tags: Wetlands (X) > partyWithName: Arctic Landscape Conservation Cooperative (X)

103 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in Celsius, averaged across a decade, at the base of active layer or at the base of the seasonally frozen soil column. The file name specifies the decade the raster represents. For example, a file named MAGT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated mean annual ground temperature (degree C) at the base of the active layer (for areas with permafrost) or at the base of the soil column that is seasonally frozen (for areas without permafrost). If the value of the cell is negative,the area has permafrost and the...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
Lakes are dominant and diverse landscapefeatures in the Arctic, but conventional land coverclassification schemes typically map them as a singleuniform class. Here, we present a detailed lake-centricgeospatial database for an Arctic watershed in northernAlaska. We developed a GIS dataset consisting of 4362lakes that provides information on lake morphometry,hydrologic connectivity, surface area dynamics,surrounding terrestrial ecotypes, and other importantconditions describing Arctic lakes. Analyzing thegeospatial database relative to fish and bird survey datashows relations to lake depth and hydrologic connectivity,which are being used to guide research and aid in themanagement of aquatic resources in the NationalPetroleum...
thumbnail
These raster datasets are output from the Geophysical Institute Permafrost Lab (GIPL) model and represent simulated active layer thickness (ALT) in meters averaged across a decade. These data were generated by driving the GIPL model with a composite of five GCM model outputs for the A1B emissions scenario. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
Beaded streams are widespread in permafrost regionsand are considered a common thermokarst landform.However, little is known about their distribution, how andunder what conditions they form, and how their intriguingmorphology translates to ecosystem functions and habitat.Here we report on a circum-Arctic survey of beaded streamsand a watershed-scale analysis in northern Alaska using remotesensing and field studies.We mapped over 400 channelnetworks with beaded morphology throughout the continuouspermafrost zone of northern Alaska, Canada, and Russiaand found the highest abundance associated with mediumto high ground-ice content permafrost in moderately slopingterrain. In one Arctic coastal plain watershed, beaded...
thumbnail
These rasters represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian Islands)....
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These rasters represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian Islands)....
thumbnail
These rasters represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian Islands)....
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in Celsius, averaged across a decade, at the base of active layer or at the base of the seasonally frozen soil column. The file name specifies the decade the raster represents. For example, a file named MAGT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated mean annual ground temperature (degree C) at the base of the active layer (for areas with permafrost) or at the base of the soil column that is seasonally frozen (for areas without permafrost). If the value of the cell is negative,the area has permafrost and the...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since manyArctic lakes are shallow and ice grows thick (historically 2 m or greater), seasonal ice commonly freezes tothe lake bed (bedfast ice) by winter’s end. Bedfast ice fundamentally alters lake energy balance and meltoutprocesses compared to deeper lakes that exceed the maximum ice thickness (floating ice) and maintainperennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-out ofbedfast ice lakes occurred on average 17 days earlier (22 June) than ice-out on adjacent floating ice lakes (9July). Earlier ice-free conditions in bedfast ice lakes caused higher open-water evaporation,...


map background search result map search result map Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska... Simulated Active Layer Thickness Potential Evapotranspiration: ECHAM5 - A1B Scenario Stand Age Projections 2070-2079 Stand Age Projections 2020-2029 Stand Age Projections 2010-2019 Mean Annual Ground Temperature 2000-2009 Mean Annual Ground Temperature 2050-2059 Active Layer Thickness 2030-2039 Active Layer Thickness 2010-2019 Potential Evapotranspiration 2070-2079: ECHAM5 - A1B Scenario Potential Evapotranspiration 2060-2069: ECHAM5 - A1B Scenario Stand Age Projections 2050-2059 Historical Stand Age 2000-2006 Active Layer Thickness 1980-1989 Historical Stand Age 1890-1899 Historical Stand Age 1970-1979 Potential Evapotranspiration 2000-2009: ECHAM5 - A1B Scenario Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska... Simulated Active Layer Thickness Potential Evapotranspiration: ECHAM5 - A1B Scenario Stand Age Projections 2070-2079 Stand Age Projections 2020-2029 Stand Age Projections 2010-2019 Mean Annual Ground Temperature 2000-2009 Mean Annual Ground Temperature 2050-2059 Active Layer Thickness 2030-2039 Active Layer Thickness 2010-2019 Potential Evapotranspiration 2070-2079: ECHAM5 - A1B Scenario Potential Evapotranspiration 2060-2069: ECHAM5 - A1B Scenario Stand Age Projections 2050-2059 Historical Stand Age 2000-2006 Active Layer Thickness 1980-1989 Historical Stand Age 1890-1899 Historical Stand Age 1970-1979 Potential Evapotranspiration 2000-2009: ECHAM5 - A1B Scenario