Skip to main content
Advanced Search

Filters: Tags: Wildlife and Plants (X) > partyWithName: U.S. Geological Survey - ScienceBase (X) > Types: OGC WMS Layer (X)

6 results (48ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset represents results from this study attributed to the Hydrologic Unit Code (HUC) 12 watershed boundaries. Human impacts occurring throughout the Northeast and Midwest United States, including urbanization, agriculture, and dams, have multiple effects on the region’s streams which support economically valuable stream fishes. Changes in climate are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing stream water temperatures. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project met that need by integrating results...
thumbnail
This dataset provides shapefile of outlines of the 68 lakes where temperature was modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). This dataset is part of a larger data release of lake temperature model inputs and outputs for 68 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9AQPIVD).
thumbnail
This dataset represents results from this study attributed to the NHDPlus catchments. Human impacts occurring throughout the Northeast and Midwest United States, including urbanization, agriculture, and dams, have multiple effects on the region’s streams which support economically valuable stream fishes. Changes in climate are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing stream water temperatures. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project met that need by integrating results of a current condition assessment...
thumbnail
While climate change is rapidly warming lakes and reservoirs, warming rates can be highly variable among systems because lake characteristics can modulate atmospheric forcing. While it is known that water clarity changes can alter lake water temperatures, it is unknown if frequently observed water clarity trends are sufficient to meaningfully impact the thermal trajectories of diverse lake populations. Using process-based modeling and empirical observations, this study demonstrates that water clarity changes of about 1% per year amplifies or suppresses warming at rates comparable to climate-induced warming. These results demonstrate that trends in water clarity, which are occurring in many lakes, may be as important...
thumbnail
This dataset represents results from this study attributed to the NHDPlus stream reach segments. Human impacts occurring throughout the Northeast and Midwest United States, including urbanization, agriculture, and dams, have multiple effects on the region’s streams which support economically valuable stream fishes. Changes in climate are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing stream water temperatures. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project met that need by integrating results of a current condition...
thumbnail
Climate change has been shown to influence lake temperatures globally. To better understand the diversity of lake responses to climate change and give managers tools to manage individual lakes, we modelled daily water temperature profiles for 10,774 lakes in Michigan, Minnesota and Wisconsin for contemporary (1979-2015) and future (2020-2040 and 2080-2100) time periods with climate models based on the Representative Concentration Pathway 8.5, the worst-case emission scenario. From simulated temperatures, we derived commonly used, ecologically relevant annual metrics of thermal conditions for each lake. We included all available supporting metadata including satellite and in-situ observations of water clarity, maximum...


    map background search result map search result map Climate warming of Wisconsin lakes can be either amplified or suppressed by trends in water clarity Spatial data: A large-scale database of modeled contemporary and future water temperature data for 10,774 Michigan, Minnesota and Wisconsin Lakes Fishtail catch: Indices and supporting data characterizing the current (1961-2000) and future (1961-2000) risk to fish habitat degradation in the Northeast Climate Science Center region Fishtail huc12: Indices and supporting data characterizing the current (1961-2000) and future (2041-2080) risk to fish habitat degradation in the Northeast Climate Science Center region Fishtail reach: Indices and supporting data characterizing the current (1961-2000) and future (2041-2080) risk to fish habitat degradation in the Northeast Climate Science Center region Process-guided deep learning water temperature predictions: 1 Spatial data (GIS polygons for 68 lakes) Climate warming of Wisconsin lakes can be either amplified or suppressed by trends in water clarity Process-guided deep learning water temperature predictions: 1 Spatial data (GIS polygons for 68 lakes) Spatial data: A large-scale database of modeled contemporary and future water temperature data for 10,774 Michigan, Minnesota and Wisconsin Lakes Fishtail reach: Indices and supporting data characterizing the current (1961-2000) and future (2041-2080) risk to fish habitat degradation in the Northeast Climate Science Center region Fishtail catch: Indices and supporting data characterizing the current (1961-2000) and future (1961-2000) risk to fish habitat degradation in the Northeast Climate Science Center region Fishtail huc12: Indices and supporting data characterizing the current (1961-2000) and future (2041-2080) risk to fish habitat degradation in the Northeast Climate Science Center region