Skip to main content
Advanced Search

Filters: Tags: coastal processes (X) > partyWithName: Woods Hole Coastal and Marine Science Center (X)

345 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
This data release contains coastal wetland synthesis products for the state of Connecticut. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, wave power, and exposure potential to environmental health stressors are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes a compilation of previously published historical shoreline positions for Virginia spanning 148 years (1849-1997), and two new mean high water (MHW) shorelines extracted from lidar data collected...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
The U.S. Geological Survey, in cooperation with the Massachusetts Office of Coastal Zone Management compiled Massachusetts vector shorelines into an updated dataset for the Office’s Shoreline Change Project. The Shoreline Change Project started in 1989 to identify erosion-prone areas of the Massachusetts coast by compiling a database of historical shoreline positions. Trends of shoreline position over long- and short-term timescales provide information to landowners, managers, and potential buyers about possible future changes to costal resources and infrastructure. This updated dataset strengthens the understanding of shoreline position change in Massachusetts. It includes U.S. Geological Survey vector shorelines...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods Hole Oceanographic Institution (WHOI) scientists conducted field surveys to re-map the field of view of the CoastCam. Aerial images of the beach for use in structure from motion were taken with a camera (Sony a6000)...
thumbnail
Note: The 2022 data release "Geospatial Characterization of Salt Marshes in Chesapeake Bay" incorporates the Blackwater region salt marsh dataset. (https://doi.org/10.5066/P997EJYB) This data release contains coastal wetland synthesis products for the geographic region of Blackwater, Chesapeake Bay, Maryland. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and others, are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent...
thumbnail
This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors...
thumbnail
This data release presents structure-from-motion (SFM) products derived from aerial imagery surveys with precise Global Navigation Satellite System (GNSS) navigation data flown in a piloted fixed wing aircraft taken along the North Carolina coast in response to Hurricane Florence (available here https://coastal.er.usgs.gov/data-release/doi-P91KB9SF/). USGS researchers use the elevation models and orthorectified imagery to assess future coastal vulnerability, nesting habitats for wildlife, and provide data for hurricane impact models. The products span the coast over both highly developed towns and natural areas, including federal lands. These products represent the coast after Hurricane Florence and cover the Cape...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
Low-altitude (80-100 meters above ground level) Unmanned Aircraft Systems (UAS) imagery of Town Neck Beach in Sandwich, Massachusetts, were used in a structure-from-motion (SfM) photogrammetry workflow to create high-resolution topographic datasets. Imagery was collected at close to low tide on twelve days to observe changes in beach and dune morphology. Ground control points (GCPs), which are temporary targets on the ground located by using a real-time kinematic global navigation satellite system (RTK-GNSS) base station and rover, were used to constrain the SfM process. Photoscan (v. 1.2-1.4) was used to create a digital elevation model and orthomosaic for each data collection day. Collection of these data was...
thumbnail
Low-altitude (80-100 meters above ground level) Unmanned Aircraft Systems (UAS) imagery of Town Neck Beach in Sandwich, Massachusetts, were used in a structure-from-motion (SfM) photogrammetry workflow to create high-resolution topographic datasets. Imagery was collected at close to low tide on twelve days to observe changes in beach and dune morphology. Ground control points (GCPs), which are temporary targets on the ground located by using a real-time kinematic global navigation satellite system (RTK-GNSS) base station and rover, were used to constrain the SfM process. Photoscan (v. 1.2-1.4) was used to create a digital elevation model and orthomosaic for each data collection day. Collection of these data was...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
thumbnail
In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coastal ecosystems in the wake of Hurricane Sandy. The U.S. Geological Survey Woods Hole Coastal and Marine Science Center made in-situ observations during 2018-2019 and 2022-2023 at two sites: Thompsons Beach, NJ and Stone Harbor, NJ. Marsh creek hydrodynamics and water quality including currents, waves, water levels, water...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...


map background search result map search result map Coastal wetlands from Jamaica Bay to western Great South Bay, New York Post-Hurricane Florence RGB averaged orthoimagery of coastal North Carolina Town Neck Beach, Massachusetts, 10 cm 2016-2017 Digital Elevation Models Town Neck Beach, Massachusetts, 5 cm 2016-2017 Orthomosaics Geospatial Characterization of Salt Marshes for Massachusetts Elevation of marsh units in Massachusetts salt marshes Mean tidal range of marsh units in Massachusetts salt marshes Historical shoreline positions for the coast of MA, from 1844 - 2014 Intersects for coastal region of Buzzards Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Topographic and bathymetric data, structure from motion imagery, and ground control data collected at Head of the Meadow Beach, Truro, MA in March 2022, U.S. Geological Survey Field Activity 2022-015-FA Geospatial characterization of salt marshes in Chesapeake Bay A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Unvegetated to vegetated ratio at Thompsons Beach and Stone Harbor, New Jersey from 2014 to 2018 Geospatial characterization of salt marshes in Connecticut (ver. 2.0, April 2024 Topographic and bathymetric data, structure from motion imagery, and ground control data collected at Head of the Meadow Beach, Truro, MA in March 2022, U.S. Geological Survey Field Activity 2022-015-FA Town Neck Beach, Massachusetts, 10 cm 2016-2017 Digital Elevation Models Unvegetated to vegetated ratio at Thompsons Beach and Stone Harbor, New Jersey from 2014 to 2018 Coastal wetlands from Jamaica Bay to western Great South Bay, New York Intersects for coastal region of Buzzards Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Intersects for coastal region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Virginia generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5.1 Geospatial characterization of salt marshes in Connecticut (ver. 2.0, April 2024 A GIS compilation of vector shorelines for the Virginia coastal region from the 1840s to 2010s Historical shoreline positions for the coast of MA, from 1844 - 2014 Geospatial Characterization of Salt Marshes for Massachusetts Mean tidal range of marsh units in Massachusetts salt marshes Elevation of marsh units in Massachusetts salt marshes Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Geospatial characterization of salt marshes in Chesapeake Bay Post-Hurricane Florence RGB averaged orthoimagery of coastal North Carolina