Skip to main content
Advanced Search

Filters: Tags: fires (X) > partyWithName: Ecosystems (X)

10 results (46ms)   

View Results as: JSON ATOM CSV
thumbnail
We evaluated the expected success of habitat recovery in priority areas under 3 different restoration scenarios: passive, planting, and seeding. Passive means no human intervention following a fire disturbance. Under a planting scenario, field technicians methodically plant young sagebrush saplings at the burned site. The seeding scenario involves distributing large amounts of sagebrush seeds throughout the affected area.
Electrical resistivity tomography (ERT) measurements were collected by the U.S. Geological Survey (USGS) at two sites in Interior Alaska in September 2019 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. First, ERT data were collected at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify permafrost characteristics beneath the lake and across its shorelines. Three 222 m ERT survey lines were collected perpendicular to the North, East, and South shorelines, and two 110 m lines were collected parallel to the southeast and northeast shorelines. Models of electrical resistivity produced from these data revealed...
thumbnail
We evaluated nest site selection and nest survival both before and after a fire disturbance occurred. We then combined those surfaces to determine the areas which were most heavily impacted by the fire.
Borehole nuclear magnetic resonance (NMR) data were collected by the U.S. Geological Survey (USGS) at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify unfrozen water content and soil properties at select sites in and around the lake edge. In September 2019, NMR data were collected within two 2.3 m deep boreholes adjacent to the East and North perpendicular electrical resistivity survey lines. Manual permafrost-probe measurements of thaw depths were also collected. These two boreholes were logged a second time in late March 2020. Additional one-time NMR measurements of liquid water content were collected in September 2019 within the lakebed sediments (0-25 cm depth) in approximately 2.5...
thumbnail
This raster dataset represents spatially explicit predictions of burn severity (dNBRPredict.tif) in the Mojave Desert based on models developed from data on the difference normalized burn ratio (dNBR) within perimeters of fires greater than 405 hectares that burned between 1984 to 2010. Raster resolution equals 30 meters, projection equals UTM Zone 11N.
thumbnail
This raster dataset represents spatially explicit predictions of probability of ignition in the Mojave Desert based on models developed from data on perimeters of fires greater than 405 hectares that burned between 1972 to 2010. Raster resolution equals 30 meters, projection equals UTM Zone 11N.
thumbnail
Sage-grouse continue to use habitat following wildfire, so prioritizing high selection, low survival areas can help ameliorate potential post-wildfire ecological traps. This shapefile represents areas within the burn scars at the Virginia Mountains field site which are high selection and high or low survival which have been deemed to be 'priority' targets for post-fire restoration efforts. The 'burn scar' used in this project is an amalgamation of multiple fires which occurred within the field site during the summers of 2016 and 2017.
thumbnail
These data are a habitat restoration index based on the intersection of loss of habitat selected by sage-grouse and loss of habitat contributions to nest survival following wildfire.
thumbnail
This raster dataset represents spatially explicit predictions of fire frequency in the Mojave Desert based on models developed from data on perimeters of fires greater than 405 hectares that burned between 1972 through 2010. Raster resolution equals 30 meters, projection equals UTM Zone 11N.


    map background search result map search result map Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance Data & Models from 2019-2020 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 Predictive Model of Burn Severity (dNBR) in the Mojave Desert Predictive Model of Fire Frequency in the Mojave Desert Predictive Model of Probability of Ignition in the Mojave Desert Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Post-Fire Change in Greater Sage-Grouse Nest Selection and Survival in the Virginia Mountains, Nevada (2018) Priority Areas for Habitat Restoration Post-Fire in the Virginia Mountains, Nevada (2018) Habitat Restoration Index for Greater Sage-Grouse in the Virginia Mountains, Nevada (2018) Mojave Desert Ecoregion Alaska permafrost characterization: Borehole Nuclear Magnetic Resonance Data & Models from 2019-2020 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 Priority Areas for Habitat Restoration Post-Fire in the Virginia Mountains, Nevada (2018) Post-Fire Change in Greater Sage-Grouse Nest Selection and Survival in the Virginia Mountains, Nevada (2018) Habitat Restoration Index for Greater Sage-Grouse in the Virginia Mountains, Nevada (2018) Sagebrush Restoration Under Passive, Planting, and Seeding Scenarios Following Fire Disturbance in the Virginia Mountains, Nevada (2018) Mojave Desert Ecoregion Predictive Model of Burn Severity (dNBR) in the Mojave Desert Predictive Model of Fire Frequency in the Mojave Desert Predictive Model of Probability of Ignition in the Mojave Desert