Skip to main content
Advanced Search

Filters: Tags: topography (X) > Types: OGC WMS Layer (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

114 results (63ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release presents beach topography and nearshore bathymetry data from repeated surveys in northern Monterey Bay, California to document changes in shoreline position and coastal morphology as they relate to episodic (storms), seasonal, and interannual and longer (e.g. El Niño) processes. The ongoing monitoring program was initiated in October 2014 with semi-annual surveys performed in late summer (September or October) and Spring (March). Nearshore bathymetry and topography data were collected along a series of shore-perpendicular transects spaced primarily at 50-250 m intervals between Santa Cruz and Moss Landing, California (fig. 1). The transects were located along sandy stretches of the coastline...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
This topobathymetric digital elevation model (TBDEM) mosaic represents the topography and bathymetry for the Milwaukee River Estuary in Milwaukee, Wisconsin and adjacent terrestrial and Lake Michigan nearshore coastal areas. The TBDEM was produced in support of modeling and for developing a physical habitat framework to help with understanding the effects from multidirectional currents and seiche effects associated with the mixing of river flows with Lake Michigan backwater. The TBDEM mosaic is built off existing terrestrial, nearshore, and estuary frameworks developed for other areas around the Great Lakes and the Milwaukee River Harbor. Ranging from 2008-2015, land elevations derived from lidar and historic topographic...
thumbnail
This dataset is a polygon shapefile delineating the footprint of bathymetric data collected in October, 2021 for an approximately 500 meter (m) reach of the Kalamazoo River upstream of Plainwell, Michigan (MI). Bathymetric data in the river channel were collected with a single beam sonar and Acoustic Current Doppler Profiler operated along 2 longitudinal transects and 48 cross-sectional transects, respectively.
thumbnail
This part of the data release presents topography data from the Elwha River delta collected in August 2022. Topography data were collected on foot with global navigation satellite system (GNSS) receivers mounted on backpacks.
thumbnail
As part of a collaborative study with the City of Raleigh, North Carolina, the U.S. Geological Survey developed a suite of high-resolution lidar-derived raster datasets for the Greater Raleigh Area, North Carolina, using repeat lidar data from the years 2013, 2015, and 2022. These datasets include raster representations of digital elevation models (DEMs), DEM of difference, the ten most common geomorphons (i.e. geomorphologic feature), lidar point density, and positive topographic openness. Raster footprints vary by year based on extent of lidar data collection. All files are available as Cloud Optimized GeoTIFF, meaning they are formatted to work on the cloud or can be directly downloaded. These metrics have been...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Carlisle 30 x 60 minute quadrangle in Pennsylvania. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2019 and 2020 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data is projected in WGS 1984 Web Mercator. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief according to a topographic position index (TPI) calculation.
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the Puerto Rico Environmental Quality Board, has compiled a series of geospatial datasets for Puerto Rico to be implemented into the USGS StreamStats application (https://streamstats.usgs.gov/ss/). These geospatial datasets, along with basin characteristics datasets for Puerto Rico published as a separate USGS data release (https://doi.org/10.5066/P9HK9SSQ), were used to delineate watersheds and develop the peak-flow and low-flow regression equations used by StreamStats. The geospatial dataset described herein are the seven layers: Catchment, AdjointCatchment, DrainageLine, DrainagePoint, LongestFlowPathCat, LongestFlowPathAdjCat, and SinkWatershed, which are...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
In 2004, about 90 migrating elk drowned after attempting to cross thin ice on the Mores Creek arm of Lucky Peak Lake upstream of the Highway 21 bridge. To better understand the depths over a range of reservoir pool elevations in the Mores Creek Arm, the U.S. Geological Survey, in cooperation with the Lucky Peak Power Plant Project, conducted high-resolution multibeam echosounder (MBES) bathymetric surveys on the Mores Creek arm on Lucky Peak Lake. The MBES data will assist reservoir managers and wildlife biologists with regulating reservoir water surface elevations (WSE) to support successful big game migration across Mores Creek on Lucky Peak Lake. Data collection provided nearly 100 percent coverage of bed elevations...
thumbnail
In 2009, the Kootenai Tribe of Idaho released and implemented the Kootenai River Habitat Restoration Master Plan. This plan aimed to restore, enhance, and maintain the Kootenai River habitat and landscape to support and sustain habitat conditions for aquatic species and animal populations. In support of these restoration efforts, the U.S. Geological Survey, in cooperation with the Kootenai Tribe of Idaho, conducted high-resolution multibeam echosounder bathymetric surveys as a baseline bathymetric monitoring survey on the Kootenai River near Bonners Ferry, Idaho. Three channel patterns or reaches exist in the study area: braided, meander, and a transitional zone connecting the braided and meander reaches. Bathymetric...
thumbnail
This dataset was created to support the Washington D.C. StreamStats project funded by the Washington D.C. Department of Energy and Environment (DOEE). The dataset contains digital elevation model (DEM), flow direction and catchment layers that were conditioned using Washingtons D.C.’s stormwater network layer. The data are hosted online as a component of the USGS StreamStats web application (https://streamstats.usgs.gov), where users can interact with a map of Washington D.C.’s stormwater pipe system and National Hydrography Dataset (NHD) “best resolution” blue lines to delineate drainage basins that account for pipe flow. This project utilized 1-meter (high resolution) terrain products, which improves upon existing...
thumbnail
This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2020 (USGS Field Activity Number 2020-622-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used to log raw data and display navigational information allowing surveyors to navigate survey lines spaced at 100- to 1000-m intervals along the beach. Profiles were surveyed from the landward edge of the study area...
thumbnail
This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2017 (USGS Field Activity Number 2017-666-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used to log raw data and display navigational information allowing surveyors to navigate survey lines spaced at 100- to 1000-m intervals along the beach. Profiles were surveyed from the landward edge of the study area...


map background search result map search result map UMRR Illinois River Alton Reach Bathymetry Footprint UMRR Illinois River Starved Rock Reach Bathymetry Footprint UMRR Mississippi River Navigation Pool 03 Bathymetry Footprint UMRR Mississippi River Navigation Pool 11 Bathymetry Footprint UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint UMRR Mississippi River Navigation Pool 15 Bathymetry Footprint Beach topography and nearshore bathymetry of northern Monterey Bay, California Beach topography of the Columbia River littoral cell, Washington and Oregon, 2017 Local geodatabases for Puerto Rico StreamStats Kootenai River Supplemental Surveys near Bonners Ferry, ID, 2012-2022 Topobathymetric Digital Elevation Model (TBDEM) of the Milwaukee River Estuary, Milwaukee, Wisconsin and adjacent terrestrial and Lake Michigan nearshore coastal areas Mores Creek Arm Bathymetric Survey - Depth Contours, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Beach topography of the Columbia River littoral cell, Washington and Oregon, 2020 Lidar-derived rasters of point density, elevation, and geomorphological features for 2013, 2015, and 2022 for the Greater Raleigh Area, North Carolina 1:24,000-scale hydrographic areas, Walker River Basin, California and Nevada Footprint of bathymetry data collected for a Kalamazoo River Reference Reach upstream of Plainwell, Michigan, in 2021 Topography data from the Elwha River delta, Washington, August 2022 Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Great Salt Lake TBDEM Spatial Metadata Digital elevation model and derivative datasets to support the integration of stormwater drainage into the Washington, D.C. Stormwater StreamStats application Footprint of bathymetry data collected for a Kalamazoo River Reference Reach upstream of Plainwell, Michigan, in 2021 Mores Creek Arm Bathymetric Survey - Depth Contours, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Topography data from the Elwha River delta, Washington, August 2022 UMRR Mississippi River Navigation Pool 03 Bathymetry Footprint Beach topography and nearshore bathymetry of northern Monterey Bay, California Topobathymetric Digital Elevation Model (TBDEM) of the Milwaukee River Estuary, Milwaukee, Wisconsin and adjacent terrestrial and Lake Michigan nearshore coastal areas UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint Kootenai River Supplemental Surveys near Bonners Ferry, ID, 2012-2022 UMRR Mississippi River Navigation Pool 11 Bathymetry Footprint Lidar-derived rasters of point density, elevation, and geomorphological features for 2013, 2015, and 2022 for the Greater Raleigh Area, North Carolina Digital elevation model and derivative datasets to support the integration of stormwater drainage into the Washington, D.C. Stormwater StreamStats application Beach topography of the Columbia River littoral cell, Washington and Oregon, 2020 Beach topography of the Columbia River littoral cell, Washington and Oregon, 2017 UMRR Illinois River Alton Reach Bathymetry Footprint Enhanced Terrain Imagery of the Carlisle 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Great Salt Lake TBDEM Spatial Metadata Local geodatabases for Puerto Rico StreamStats 1:24,000-scale hydrographic areas, Walker River Basin, California and Nevada