Skip to main content
Advanced Search

Filters: Tags: topography (X) > Types: OGC WMS Layer (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

114 results (103ms)   

View Results as: JSON ATOM CSV
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points; geolocated, RGB-colored point...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 3DR Solo quadcopter, CMGP, Charles Point, Coastal and Marine Geology Program, DEM, All tags...
thumbnail
Surveys of channel and floodplain topography were used to characterize the morphology of two reaches of the lower Merced River in California's Central Valley and to parameterize a hydraulic model. These data were collected to support research intended to evaluate the extent to which large-scale restoration projects provided improved salmon spawning habitat. A related goal of this study was to improve our understanding of the geomorphic factors influencing spawning site selection by salmon. At the Merced River Ranch field site, river channel and floodplain topography was measured using a combination of real-time kinematic (RTK) GPS for wadable parts of the channel, an echo sounder for deep pools, and photogrammetry...
thumbnail
This imagery dataset consists of 3-meter resolution, lidar-derived imagery of the Roanoke 30 x 60 minute quadrangle in Virginia. It also covers a part of the Appalachian Basin Province. The source data used to construct this imagery consists of 1-meter resolution lidar-derived digital elevation models (DEMs). The lidar source data were compiled from different acquisitions published between 2017 and 2021 and downloaded from the USGS National Map TNM Download. The data were processed using geographic information systems (GIS) software. The data spatial reference is the WGS 1984 geographic coordinate system. This representation illustrates the terrain as a hillshade with contrast adjusted to highlight local relief...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
In 2016, the U.S. Army Corps of Engineers (USACE) started collecting high-resolution multibeam echosounder (MBES) data on Lake Koocanusa. The survey originated near the International Boundary (River Mile (RM) 271.0) and extended down the reservoir, hereinafter referred to as downstream, about 1.4 miles downstream of the Montana 37 Highway Bridge near Boulder Creek (about RM 253). USACE continued the survey in 2017, completing a reach that extended from about RM 253 downstream to near Tweed Creek (RM 244.5). In 2018, the U.S. Geological Survey (USGS) Idaho Water Science Center completed the remaining portion of the reservoir from RM 244.5 downstream to Libby Dam (RM 219.9). The MBES data collected in 2016 and 2017...
thumbnail
In 2004, about 90 migrating elk drowned after attempting to cross thin ice on the Mores Creek arm of Lucky Peak Lake upstream of the Highway 21 bridge. To better understand the depths over a range of reservoir pool elevations in the Mores Creek Arm, the U.S. Geological Survey, in cooperation with the Lucky Peak Power Plant Project, conducted high-resolution multibeam echosounder (MBES) bathymetric surveys on the Mores Creek arm on Lucky Peak Lake. The MBES data will assist reservoir managers and wildlife biologists with regulating reservoir water surface elevations (WSE) to support successful big game migration across Mores Creek on Lucky Peak Lake. Data collection provided nearly 100 percent coverage of bed elevations...
thumbnail
La Soufrière Volcano is a 1,220 m high stratovolcano that occupies the northern half of the island of St. Vincent, Lesser Antilles, Eastern Caribbean. It has a long history of explosive and sometimes devastating eruptions. Beginning in December 2020 and ending in April 2021, La Soufrière Volcano produced a Volcano Explosivity Index (VEI) 4 eruption that greatly impacted the landscape, communities, and infrastructure on the island of St. Vincent. The eruption produced intense ash plumes, heavy ashfall, and pyroclastic flows down several river valleys. During and following the eruption, destructive lahars (volcanic mudflows) impacted rivers valleys and coastal communities for months. The USGS-USAID Volcano Disaster...
thumbnail
This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2018 (USGS Field Activity Number 2018-652-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used to log raw data and display navigational information allowing surveyors to navigate survey lines spaced at 100- to 1000-m intervals along the beach. Profiles were surveyed from the landward edge of the study area...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points; geolocated, RGB-colored point...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 3DR Solo quadcopter, CMGP, Coastal and Marine Geology Program, DEM, Federal Emergency Management Agency, All tags...
thumbnail
These data include groundwater-level data from 59 wells measured from July to August 2017. Measured groundwater data are also available from the USGS National Water Information System (U.S. Geological Survey, 2018) Well locations were selected from three sources: previously reported sites (Kresse and Hays, 2009), site reconnaissance, and driller’s logs obtained from the Arkansas Natural Resources Commission driller database. Reference: U.S. Geological Survey, 2018, USGS water data for the Nation: U.S. Geological Survey National Water Information System database, accessed 1 July 2017 at http://dx.doi.org/10.5066/F7P55KJN.
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic habitats of the Illinois River will be interpreted to support Asian carp research, monitoring and control. The entire study plan will consist of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), will have priority areas and backwaters collected and analyzed first.
thumbnail
This portion of the USGS data release presents topography data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon, in 2015 (USGS Field Activity Number 2015-647-FA). Topographic profiles were collected by walking along survey lines with global navigation satellite system (GNSS) receivers mounted on backpacks. Prior to data collection, vertical distances between the GNSS antennas and the ground were measured using a tape measure. Hand-held data collectors were used to log raw data and display navigational information allowing surveyors to navigate survey lines spaced at 100- to 1000-m intervals along the beach. Profiles were surveyed from the landward edge of the study area...
thumbnail
This dataset is a longitudinal profile of the river bed and water surface along the thalweg of a an approximately 500 meter (m) reach of the Kalamazoo River upstream of Plainwell, Michigan (MI). The bed profile was derived from a digital elevation model (DEM) comprising topographic and bathymetric data for the Plainwell reach. Bathymetric data in the river channel were collected in October, 2021 with a single beam sonar and Acoustic Current Doppler Profiler (ADCP) operated along two longitudinal transects and 48 cross-sectional transects, respectively. River bank topographic data were collected with a backpack-mounted terrestrial lidar unit concurrently with the bathymetric data. The water surface profile was developed...
thumbnail
This dataset is a classified point cloud comprising topographic and bathymetric data for an approximately 500 meter (m) reach of the Kalamazoo River upstream of Plainwell, Michigan (MI). The dataset contains point elevation data collected by several different methods. Bathymetric data in the river channel were collected in October, 2021 with a single beam sonar and Acoustic Current Doppler Profiler operated along 2 longitudinal transects and 48 cross-sectional transects, respectively. River bank topographic data were collected with a backpack-mounted terrestrial lidar unit concurrently with the bathymetric data. All points from the respective datasets were projected to the same coordinate system. Points were classified...
thumbnail
The U.S. Geological Survey, in cooperation with the California Department of Water Resources (DWR), has constructed a new spatially distributed Precipitation-Runoff Modeling System (PRMS) for the Merced River Basin (Koczot and others, 2021), which is a tributary of the San Joaquin River in California. PRMS is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and basin hydrology to various combinations of climate and land use (Markstrom and others, 2015). Although further refinement may be required to apply the Merced PRMS for official streamflow forecast operations, this application of PRMS is calibrated with intention to simulate (and...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Shapefile; Tags: California, Climate, Climatology, Draper Climate-Distribution Software (Draper), Geography, All tags...


map background search result map search result map UMRR Illinois River Dresden Reach Bathymetry Footprint UMRR Illinois River Peoria Reach Bathymetry Footprint UMRR Mississippi River Open River North Bathymetry Footprint UMRR Mississippi River Navigation Pool 04 Bathymetry Footprint UMRR Mississippi River Navigation Pool 20 Bathymetry Footprint UMRR Mississippi River Navigation Pool 24 Bathymetry Footprint Well Point Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 Archive of Merced River Basin Precipitation-Runoff Modeling System, with forecasting, climate-file preparation, and data-visualization tools Charles Point digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image) Lake Bluffs digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image) Surveys of channel bed topography from two restored reaches of the lower Merced River, California Beach topography of the Columbia River littoral cell, Washington and Oregon, 2015 Beach topography of the Columbia River littoral cell, Washington and Oregon, 2018 Lake Koocanusa Maximum and Minimum Pool Elevation Contours, Lincoln County, Montana Mores Creek Arm Bathymetric Survey - Depth DEM, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Illinois River, Peoria Reach Priority Areas, Multibeam Bathymetry, September 2019 Classified topobathymetric point cloud of Kalamazoo River Reference Reach upstream of Plainwell, Michigan, 2021 Longitudinal Profile for Kalamazoo River Reference Reach upstream of Plainwell, Michigan, 2021 Enhanced Terrain Imagery of the Roanoke 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Airborne lidar survey of St Vincent, Eastern Caribbean, following the 2020-21 eruption of La Soufrière Volcano Classified topobathymetric point cloud of Kalamazoo River Reference Reach upstream of Plainwell, Michigan, 2021 Longitudinal Profile for Kalamazoo River Reference Reach upstream of Plainwell, Michigan, 2021 Charles Point digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image) Mores Creek Arm Bathymetric Survey - Depth DEM, Lucky Peak Lake, Boise County, Idaho, May 11 - 13, 2021 Lake Bluffs digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image) Well Point Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 Surveys of channel bed topography from two restored reaches of the lower Merced River, California UMRR Illinois River Dresden Reach Bathymetry Footprint Airborne lidar survey of St Vincent, Eastern Caribbean, following the 2020-21 eruption of La Soufrière Volcano UMRR Mississippi River Navigation Pool 24 Bathymetry Footprint Lake Koocanusa Maximum and Minimum Pool Elevation Contours, Lincoln County, Montana UMRR Mississippi River Navigation Pool 04 Bathymetry Footprint Illinois River, Peoria Reach Priority Areas, Multibeam Bathymetry, September 2019 Beach topography of the Columbia River littoral cell, Washington and Oregon, 2018 Beach topography of the Columbia River littoral cell, Washington and Oregon, 2015 UMRR Illinois River Peoria Reach Bathymetry Footprint Enhanced Terrain Imagery of the Roanoke 30 x 60 Minute Quadrangle from Lidar-Derived Elevation Models at 3-Meter Resolution Archive of Merced River Basin Precipitation-Runoff Modeling System, with forecasting, climate-file preparation, and data-visualization tools UMRR Mississippi River Open River North Bathymetry Footprint