Skip to main content
Advanced Search

Filters: Date Range: {"choice":"year"} (X) > Tags: {"scheme":"https://www.sciencebase.gov/vocab/category/NCCWSC/Landscapes","name":"forests"} (X) > Categories: Publication (X)

45 results (16ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Tag Types
Tags (with Scheme=https://www.sciencebase.gov/vocab/category/NCCWSC/Landscapes)
View Results as: JSON ATOM CSV
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.11144/full): The extensive forests that cover the mountains of the Pacific Northwest, USA, modify snow processes and therefore affect snow water storage as well as snow disappearance timing. However, forest influences on snow accumulation and ablation vary with climate, topography, and land cover and are therefore subject to substantial temporal and spatial variability. We utilize multiple years of snow observations from across the region to assess forest-snow interactions in the relatively warm winter conditions characteristic of the maritime and maritime-continental climates. We (1) quantify the difference in snow magnitude and disappearance timing...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2015WR017873/abstract): Spatially distributed snow depth and snow duration data were collected over two to four snow seasons during water years 2011–2014 in experimental forest plots within the Cedar River Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 × 40 m forest plots, situated on the western slope of the Cascade Range, include unthinned second-growth coniferous forests, variable density thinned forests, forest gaps in which a 20 m diameter (approximately equivalent to one tree height) gap was cut in the middle of each plot, and old-growth forest. Together, this publicly available data set includes snow depth and density observations...
Abstract (from https://link.springer.com/article/10.1007/s10980-017-0540-9): Context Quantitative models of forest dynamics have followed a progression toward methods with increased detail, complexity, and spatial extent. Objectives We highlight milestones in the development of forest dynamics models and identify future research and application opportunities. Methods We reviewed milestones in the evolution of forest dynamics models from the 1930s to the present with emphasis on forest growth and yield models and forest landscape models We combined past trends with emerging issues to identify future needs. Results Historically, capacity to model forest dynamics at tree, stand, and landscape scales was constrained...
Categories: Publication; Types: Citation; Tags: Forests, Landscapes, Northeast CASC
Abstract (from http://www.sciencedirect.com/science/article/pii/S143383191400105X): Floodplain forests are extremely productive for agriculture and historical floodplain forests have been converted to prime agricultural land throughout the world, resulting in disruption of ecosystem functioning. Given that flooding may increase with climate change and reforestation will increase resiliency to climate change, we tested whether reforested floodplains also have great potential to store carbon and the effects of even modest increases in forested acreage on carbon storage. To calculate potential aboveground biomass in the Lower Mississippi River Alluvial Valley (LMAV) of the United States, we determined current and historical...
Abstract (from http://link.springer.com/article/10.1007%2Fs10980-015-0294-1): Context Tree species distribution and abundance are affected by forces operating at multiple scales. Niche and biophysical process models have been commonly used to predict climate change effects at regional scales, however, these models have limited capability to include site-scale population dynamics and landscape-scale disturbance and dispersal. We applied a landscape modeling approach that incorporated three levels of spatial hierarchy (pixel, landtype, and ecological subsection) to model regional-scale shifts in forest composition under climate change. Objective To determine (1) how importance value of individual species will...
Abstract (from http://www.hydrol-earth-syst-sci.net/21/1/2017/): The phase of precipitation when it reaches the ground is a first-order driver of hydrologic processes in a watershed. The presence of snow, rain, or mixed-phase precipitation affects the initial and boundary conditions that drive hydrological models. Despite their foundational importance to terrestrial hydrology, typical phase partitioning methods (PPMs) specify the phase based on near-surface air temperature only. Our review conveys the diversity of tools available for PPMs in hydrological modeling and the advancements needed to improve predictions in complex terrain with large spatiotemporal variations in precipitation phase. Initially, we review...
Abstract (from http://jcom.sissa.it/archive/15/01/JCOM_1501_2016_A01): Whereas the evolution of snow cover across forested mountain watersheds is difficult to predict or model accurately, the presence or absence of snow cover is easily observable and these observations contribute to improved snow models. We engaged citizen scientists to collect observations of the timing of distributed snow disappearance over three snow seasons across the Pacific Northwest, U.S.A. . The primary goal of the project was to build a more spatially robust dataset documenting the influence of forest cover on the timing of snow disappearance, and public outreach was a secondary goal. Each year's effort utilized a different strategy, building...
Public land managers face the daunting task of incorporating climate change vulnerability assessments into their land use planning. This NW CSC project developed decision support tools to guide resource managers through the process of including future climate projections, climate change vulnerability assessments, and adaptation response strategies and tactics into ongoing and existing planning efforts such as FS forest plan revisions and individual project plans. The tools were developed and tested through direct engagement with resource managers. The tools guide participants through a step-wise process that provides a structured framework to help managers (1) integrate climate projections with other local information...
This fact sheet was prepared by Jessica Halofsky, David Peterson and Brian Harvey, University of Washington, School of Environmental and Forest Sciences. Editorial assistance from Patti Loesche and Darcy Widmayer. Funding for this work provided by the U.S. Department of the Interior, Northwest Climate Adaptation Science Center. This fact sheets goes with the following synthesis paper: https://doi.org/10.1186/s42408-019-0062-8.
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/eap.1396/full): Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western US, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle are not well understood, yet are important considerations in whether to list whitebark pine as a threatened or endangered species. We sought to increase the understanding of climate influences on mountain pine beetle outbreaks in whitebark pine forests, which are less well understood...
Eastern spruce-fir forest ecosystems are among the most vulnerable to climate change within the conterminous US. The goal of this project was to develop tools to identify refugia sites most likely to support spruce-fir forest and its associated high-priority obligate spruce-fir bird species over the long-term under projected climate change scenarios. Specific research objectives included: (1) producing high-resolution (temporal and spatial) projections of spruce-fir forests, including stand characteristics like structure and composition; (2) estimating future changes in the distribution, productivity, and stand characteristics of the spruce-fir forest type due to potential changes in climate; (3) comparing the distribution...
Abstract (from http://link.springer.com/article/10.1007%2Fs10980-015-0217-1): Context Tree species distribution and abundance are affected by forces operating across a hierarchy of ecological scales. Process and species distribution models have been developed emphasizing forces at different scales. Understanding model agreement across hierarchical scales provides perspective on prediction uncertainty and ultimately enables policy makers and managers to make better decisions. Objective Our objective was to test the hypothesis that agreement between process and species distribution models varies by hierarchical level. Due to the top-down approach of species distribution models and the bottom-up approach of process...
Scenario planning is one decision support method that can help natural resource managers incorporate information about uncertain future changes in climate into management decisions. To provide a proof of concept of the value of scenario planning in helping managers prepare for climate change, we conducted a pilot scenario planning effort aimed at helping state agencies in the northeastern United States develop climate-informed moose management goals and actions. To encourage participation by wildlife managers, we provided several opportunities for them to learn about scenario planning and examples of its application in natural resource management. We shared this information via guidance documents on incorporating...
Northeastern boreal forests are an important habitat for many wildlife species, including migratory birds and moose. These animals play vital roles in the boreal forest ecosystem, are a source of pleasure for bird and wildlife watchers, and contribute to tourism revenue for many communities. However, moose and migratory birds are thought to be particularly vulnerable to the impacts of climate change. For example, in New York’s Adirondack State Park, six species of boreal birds have shown population declines over the past ten years. Meanwhile, moose in many parts of the northeast are threatened by winter ticks that thrive in warmer climates and spread disease. Building upon earlier work related to climate impacts...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/9781119011705.ch10/summary): This chapter discusses an approach that uses MC1 results to create climate-informed state-and-transition simulation model (cSTSMs) in two contrasting landscapes: dry forests in central Oregon and wet forests in western Washington. The studies presented here examine trends in different socioecological values under different climate and management assumptions using a dynamic global vegetation model/STSM approach. The authors found that simulated management actions did not prevent climate-induced vegetation change. Simulated management did in some cases promote desired forest structures and increase resilience to climate change....
Forests in the Eastern United States are changing in response to ecological succession, tree harvest and other disturbances and climate change has the potential to further change these forests. We predicted the distribution and abundance of common tree species across portions of the Eastern U.S. under alternative climate scenarios that varied in the amount of warming by the end of the century from 1.1 to 4.2 degrees C. We used a forest landscape change model to forecast changes in tree abundances and distribution in the North Atlantic region of the U.S. while accounting for climate change, succession, and harvest. We then considered a broader region of the U.S. and combined our results with results from previous...
Aspen forests are “biological hotspots” in the western United States that support numerous wildlife species. Aspen ecosystems are also economically and socially important, providing high quality forage for livestock and game species (e.g. elk), as well as drawing tourists and improving local economies. Aspen ecosystems are in decline across portions of the western U.S., which is thought to be partly due to drought, and recent research suggests that future climate projected for the western U.S. will be even less capable of supporting aspen. We used different research methods to investigate key controls on aspen growth and survivability in the northern Great Basin and central Rockies. Specifically, we projected the...
Abstract (from AGU100): Forest conservation and carbon sequestration efforts are on the rise, yet the longā€term stability of these efforts under a changing climate remains unknown. We generate nearly three decades of remotely sensed canopy water content throughout California, which we use to determine patterns of drought stress. Linking these patterns of drought stress with meteorological variables enables us to quantify spatially explicit biophysical drought resistance in terms of magnitude and duration. These maps reveal significant spatial heterogeneity in drought resistance and demonstrate that almost all forests have less resistance to severe, persistent droughts. By identifying the spatial patterning of biophysical...
The red-backed salamander (Plethodon cinereus) is considered an indicator of forest health. The range of the species covers much of the eastern and central US, and is often locally abundant where it occurs, primarily in deciduous forest. While there are expectations that changes in climate will result in changes in forest ecosystems, the ability of a forest indicator such as the red-backed salamander to adapt to those changes, has not been assessed. We found that the red-backed salamander may have little adaptive capacity, but that changes in climate conditions may be buffered by salamander behavior, including its typical response to retreat underground during times of high temperature or during short-term drought....