Skip to main content
Advanced Search

Filters: Date Range: {"choice":"year"} (X) > Types: ArcGIS REST Map Service (X) > Categories: Data (X)

1,297 results (151ms)   

Filters
Date Types (for Date Range)
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data set contains shoreline rate of change statistics for New York State coastal wetlands. Analysis was performed using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0, an extension for ArcMap. A reference baseline was used as the originating point for orthogonal transects cast by the DSAS software. The transects intersect each polyline vector shoreline establishing intersection measurement points, which were then used to calculate the rates of change. End-point rates, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...
thumbnail
Karst hydrologic systems are important resources in the state of Tennessee both as drinking water resources and as centers for possible biological diversity. These systems are susceptible to contamination due to the inherent connectivity between surface water and groundwater systems in karst systems. A partnership between the U.S. Geological Survey (USGS) and Tennessee Department of Conservation (TDEC) was formed to investigate karst spring systems across the state utilizing fluorescent groundwater tracing, particularly in areas where these resources may be used as drinking water sources. In fall 2021, USGS and TDEC staff identified possible vulnerabilities or complexities that may exist within karst spring systems...
thumbnail
This file describes a set of outputs from the Sea Level Affecting Marshes Model (SLAMM), which consists of rasters containing SLAMM’s coastal cover categories (classes) for a study area on the Gulf of Mexico (U.S.) coast. The model was used to simulate the impact of sea level rise (SLR) on these coastal cover classes, with an emphasis on wetlands, for the “Evaluation of Regional SLAMM Results to Establish a Consistent Framework of Data and Models” project. The project was performed by Warren Pinnacle Consulting, Inc., and Image Matters LLC. The project was funded by the Gulf Coast Prairie Landscape Conservation Cooperative (LCC). A coordinated network of landscape conservation cooperatives (each an “LCC”) is being...
thumbnail
Survey data was integrated within a GIS by georeferencing observations to an existing national spatial framework (National Hydrography Dataset), which allows for broader transferability to watersheds shared with neighboring states, creating a seamless layer not limited by state boundaries. Addressing the management and conservation challenges for native fishes will require the ability to “data mine” the extensive existing information on distribution and abundance of species available from aquatic survey programs. Results from such syntheses can be used to assess the current conservation status of native fishes, quantify the extent of species invasions, and establish baseline distributions with which to evaluate...
thumbnail
Burn probability (BP) for Fireline Intensity Class 5 (FIL5) with flame lengths in the range of 2.4-3.7 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 4 (FIL4) with flame lengths in the range of 1.8-2.4 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 2 (FIL2) with flame lengths in the range of 0.6-1.2 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
The capacity of ecosystems to provide services such as carbon storage, clean water, and forest products is determined not only by variations in ecosystem properties across landscapes, but also by ecosystem dynamics over time. ForWarn is a system developed by the U.S. Forest Service to monitor vegetation change using satellite imagery for the continental United States. It provides near real-time change maps that are updated every eight days, and summaries of these data also provide long-term change maps from 2000 to the present. Based on the detection of change in vegetation productivity, the ForWarn system monitors the effects of disturbances such as wildfires, insects, diseases, drought, and other effects of weather,...
thumbnail
WaSSI (Water Supply Stress Index) predicts how climate, land cover, and human population change may impact water availability and carbon sequestration at the watershed level (about the size of a county) across the lower 48 United States. WaSSI users can select and adjust temperature, precipitation, land cover, and water use factors to simulate change scenarios for any timeframe from 1961 through the year 2100. Simulation results are available as downloadable maps, graphs, and data files that users can apply to their unique information and project needs. WaSSI generates useful information for natural resource planners and managers who must make informed decisions about water supplies and related ecosystem services...
thumbnail
This project identifies priority areas in the Columbia Plateau Ecoregion to implement conservation strategies for riverine and riparian habitat. This is tailored towards the Arid Lands Initiative (ALI) conservation goals and objectives, and provides the foundation for adaptation to a changing climate. This project adopts a “zoned” approach to identifying focal areas, connectivity management zones and zones for riparian habitat and ecological representation. Through a series of workshops and webinars, the ALI articulated its freshwater conservation goals and targets. Key aspects of these goals included: a focus on non-anadromous salmonid (salmon and steelhead) species, include riparian birds and waterfowl as key...
thumbnail
This file describes a set of outputs from the Sea Level Affecting Marshes Model (SLAMM), which consists of rasters containing SLAMM’s coastal cover categories (classes) for a study area on the Gulf of Mexico (U.S.) coast. The model was used to simulate the impact of sea level rise (SLR) on these coastal cover classes, with an emphasis on wetlands, for the “Evaluation of Regional SLAMM Results to Establish a Consistent Framework of Data and Models” project. The project was performed by Warren Pinnacle Consulting, Inc., and Image Matters LLC. The project was funded by the Gulf Coast Prairie Landscape Conservation Cooperative (LCC). A coordinated network of landscape conservation cooperatives (each an “LCC”) is being...
thumbnail
The SRLCC provided funds to the states of Arizona and New Mexico to support development of the states Crucial Habitat Assessment Tools (CHATs) which provide a decision support system to better incorporate wildlife values, sensitive animals and plants, and important ecosystem features into land use decision-making to reduce conflicts and surprises.Several states have released wildlife mapping tools that are the foundation for displaying crucial wildlife and corridor information. The state and regional CHATs are non-regulatory, and give project planners and the general public access to credible scientific data on a broad scale for use in project analysis, siting and planning. This includes large-scale development...
Categories: Data, Project; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AZ-01, AZ-02, AZ-03, AZ-04, AZ-05, All tags...
thumbnail
For more information about how these data were developed, please see the final report. Expert opinion was used to define a resistance surface for each of the target animals, with higher resistance representing map units expected to be more difficult and more dangerous for species to move through. A set of nodes for each species, with node points indicating center locations for potential source populations for the species, are also defined. Note actual species population data to define the nodes is not used, as that data was often unavailable, and the focus is on the potential spread of the species across the SALCC region and not limited to models to known populations. Therefore, node locations were determined by...
thumbnail
The goal of this project is to provide a preliminary overview, at a National scale, the relative susceptibility of the Nation's coast to sea- level rise through the use of a coastal vulnerability index (CVI). This initial classification is based upon the variables geomorphology, regional coastal slope, tide range, wave height, relative sea-level rise and shoreline erosion and accretion rates. The combination of these variables and the association of these variables to each other furnish a broad overview of regions where physical changes are likely to occur due to sea-level rise.
thumbnail
This data product contains combined estimates of high habitat quality areas for mountain lion, mule deer, desert bighorn sheep, and black bear. The analysis area was a 236,000 square kilometers that encompassed the Navajo Nation, which includes portions of Arizona, New Mexico, and Utah. The estimates of habitat quality were created with spatially explicit habitat variables and either an expert-based linear combination process (for mountain lion and mule deer) or a generalized linear mixed model-based estimation that used radio-collar telemetry data (for desert bighorn sheep, black bear, and pronghorn; collected between 2005-2011). Habitat variables varied among species but included vegetation type, terrain ruggedness,...
thumbnail
This map represents a potential Conservation Target (CT) for PFLCC's 'Hardwood Forested Uplands' (HFU) Priority Resource (PR). The potential CT is Landscape Configuration. This layer was created for an initial investigation of potential CT's suggested at brainstorming workshops. The initial investigation entails locating available datasets to address the suggested CT as closely as possible and performing minimal analyses to determine their usefulness. The final set of CT's and their associated datasets will be chosen after targets (e.g., endpoints) are established as a threshold for achieving conservation success for that CT. The available data layer to address landscape configuration is CLIP 4.0 core data -- Landscape...
thumbnail
In 2006, the Century Commission for a Sustainable Florida called for an identification of those lands and waters in the state that are critical to the conservation of Florida’s natural resources. In response, the Florida Natural Areas Inventory, University of Florida Center for Landscape Conservation Planning, and Florida Fish & Wildlife Conservation Commission collaborated to produce CLIP - the Critical Lands and Waters Identification Project. CLIP is a GIS database of statewide conservation priorities for a broad range of natural resources, including biodiversity, landscape function, surface water, groundwater, and marine resources. CLIP is now being used to inform planning decisions by the Peninsular Florida...


map background search result map search result map NorWeST_SpoKootRiverBasin Support to Western States Crucial Habitat Assessment Tools Black Bear Connectivity Wave Height Data for the Gulf of Mexico Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 5, predicted for 2080 to 2100 for Rio Grande study area High Habitat Quality Count Base layers for NY WSC gages mapper Speckled Dace Occurrence in the Verde River Basin WASSI Future Change in Water Supply Stress Index 1991-2010 ForWarn Mean Summer National Difference Vegetation Index 2009-2013 Florida Critical Lands and Waters Identification Project 4 0 Sea-Level Affecting Marshes Model 0.5m SLR - 2075 Selection frequency score Figure(6) Sea-Level Affecting Marshes Model 2.0m SLR - base year HFU Configuration Rate of shoreline change statistics for New York State coastal wetlands Cowan, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Woodbury, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Cowan, Tennessee Karst Groundwater Dye Tracing Water Year 2022 Speckled Dace Occurrence in the Verde River Basin Rate of shoreline change statistics for New York State coastal wetlands High Habitat Quality Count Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 5, predicted for 2080 to 2100 for Rio Grande study area NorWeST_SpoKootRiverBasin Selection frequency score Figure(6) HFU Configuration Florida Critical Lands and Waters Identification Project 4 0 Base layers for NY WSC gages mapper Wave Height Data for the Gulf of Mexico Black Bear Connectivity Sea-Level Affecting Marshes Model 2.0m SLR - base year Sea-Level Affecting Marshes Model 0.5m SLR - 2075 Support to Western States Crucial Habitat Assessment Tools WASSI Future Change in Water Supply Stress Index 1991-2010 ForWarn Mean Summer National Difference Vegetation Index 2009-2013