Skip to main content
Advanced Search

Filters: Tags: {"type":"Theme","scheme":"General"} (X) > partyWithName: U.S. Geological Survey (X)

45 results (15ms)   

View Results as: JSON ATOM CSV
This file (wymt_ffa_2018D_WATSTORE.txt) contains peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018. The file is in a text format called WATSTORE (National Water Data Storage and Retrieval System) available from NWISWeb (http://nwis.waterdata.usgs.gov/usa/nwis/peak).
thumbnail
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to a derivation of sediments that have been transported to, and deposited in, a basal bowl-shaped depression since the last glacial maximum. Ninety-two piston, vibra-, and gravity cores with a maximum length of 8.2...
thumbnail
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the landslide complex. Sedimentological and geotechnical characterization of the cores was carried out through whole core imaging and description, followed by analysis of discrete samples at the USGS Woods Hole Coastal and...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, that were based on methods described by Sando and McCarthy (2018). Citation: Sando, S.K., and McCarthy, P.M.,...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
Variability in sediment properties with depth and the thickness of individual sedimentary layers are critical determinants of seabed acoustic response. The New England Mud Patch (NEMP), located south of Cape Cod, is an unusual feature on the U.S. Continental Shelf in that it is composed of fine-grained sediment layers containing a relatively-homogeneous mix of sand, silt, and clay-sized particles bounded by more typical sandy shelf sediments. The unique characteristics and nature of this deposit is due to a derivation of sediments that have been transported to, and deposited in, a basal bowl-shaped depression since the last glacial maximum. Ninety-two piston, vibra-, and gravity cores with a maximum length of 8.2...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected USGS streamgages. This data release presents peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, based on data through water year 2022, using methods described by Sando and McCarthy (2018).
thumbnail
Twenty-four piston cores (and associated trigger cores) were collected from the source zone of the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon by the U.S. Geological Survey and the University of Rhode Island Department of Ocean Engineering during an eight-day cruise aboard the R/V Hugh R. Sharp in September/October of 2012. These cores were analyzed for evidence of seafloor mass transport processes, with an emphasis on constraining the age and shallow stratigraphy of the landslide complex. Sedimentological and geotechnical characterization of the cores was carried out through whole core imaging and description, followed by analysis of discrete samples at the USGS Woods Hole Coastal and...
thumbnail
Data were collected by the U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center to investigate the influence of wind waves on sediment dynamics in two flooded agricultural tracts in the northern Sacramento-San Joaquin Delta: Little Holland Tract and Liberty Island. This effort is part of a large interdisciplinary study led by the USGS California Water Science Center and funded by the U.S. Bureau of Reclamation to investigate how shallow-water habitats in the Sacramento-San Joaquin Delta function and whether they provide good habitat for native fish species, including the Delta smelt. Elevated turbidity is a requirement for Delta smelt habitat, and turbidity is largely comprised of suspended sediment....
Categories: Data, Data Release - Revised; Types: Citation; Tags: Average Burst Pressure, CMG, CMGP, CONDUCTIVITY, CTD > CONDUCTIVITY, TEMPERATURE, DEPTH, All tags...
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near Powell County, Montana, that were based on methods described by Sando and McCarthy (2018).
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).


map background search result map search result map Wind-wave and suspended-sediment data from Liberty Island and Little Holland Tract, Sacramento-San Joaquin Delta, California (ver. 2.0, September 2019) Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin Montana, based on data through water year 2018, Part 1 Peak-flow frequency analyses for selected streamgages in and near Powell County, Montana, based on data through water year 2019 High-resolution magnetic susceptibility of sediment cores from the New England collected on USGS Field Activity 2016-001-FA Summary of analytical data for sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 WATSTORE Peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 Results of peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 Multi-sensor core logger (MSCL) data of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA Visual description sheets of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA Wind-wave and suspended-sediment data from Liberty Island and Little Holland Tract, Sacramento-San Joaquin Delta, California (ver. 2.0, September 2019) Visual description sheets of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA High-resolution magnetic susceptibility of sediment cores from the New England collected on USGS Field Activity 2016-001-FA Summary of analytical data for sediment cores from the New England Mud Patch collected on USGS Field Activity 2016-001-FA Peak-flow frequency analyses for selected streamgages in and near Powell County, Montana, based on data through water year 2019 Multi-sensor core logger (MSCL) data of sediment cores from the Currituck Landslide Complex and upper slope adjacent to Baltimore Canyon collected on USGS Field Activity 2012-007-FA PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 WATSTORE Peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 Results of peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, part 2 Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin Montana, based on data through water year 2018, Part 1