Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: Jonathan W Musser (X)

16 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
In cooperation with the South Carolina Department of Transportation (SCDOT), the U.S. Geological Survey prepared geospatial layers illustrating the boundaries of the regions used in the South Carolina (SC) Stream Hydrograph Methods presented in Bohman (1990,1992). The region limits were described in written text and depicted in figures in Bohman (1990, 1992), but have not been provided as geospatial layers (due to the age of the original publications). This project used best-available geospatial data from the U.S. Environmental Protection Agency (USEPA) ecoregions (2013) to create equivalent geospatial representations of the Bohman (1990, 1992) region boundaries for the SC Stream Hydrograph Methods. These layers...
thumbnail
Alterations to stream hydrology, which include changes in stream geomorphology, are primary impacts of anthropogenic disruption. In North Carolina, hydrological alterations lead to environmental impacts through degraded ecosystems and water quality. In collaboration with the North Carolina Department of Environmental Quality, Division of Mitigation Services (DMS), the USGS South Atlantic Water Science Center datasets are proxy measurements of the extent of altered hydrology in riverine systems across the State of North Carolina. The datasets consist of an inventory and characterization of small scale (mostly agricultural) ponds and artificial drainages, which are both significant hydrologic modifications in the...
thumbnail
The U.S. Geological Survey South Atlantic Water Science Center, in cooperation with the South Carolina Department of Transportation, implemented a South Carolina StreamStats application in 2018. This shapefile dataset contains vector lines representing streams, rivers, and ditches that were used in preparing the underlying data for the South Carolina StreamStats application. Data were compiled from multiple sources, but principally represent lidar-derived linework from the South Carolina Department of Natural Resources and the South Carolina Lidar Consortium.The South Carolina hydrography lines were created from elevation rasters that ranged from 4 to 10 ft resolution, to produce a product of approximately 1:6,000-scale....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Abbeville County, Aiken County, Allendale County, Anderson County, Bamberg County, All tags...
thumbnail
Digital flood-inundation maps for a 12.6-mile reach of the Withlacoochee River from Skipper Bridge Road to St. Augustine Road, Lowndes County, Georgia, were created by the U.S. Geological Survey (USGS) in cooperation with the city of Valdosta and Lowndes County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage Withlacoochee River at Skipper Bridge Road, near Bemiss, Georgia (023177483). Real-time stage information from this streamgage can be obtained at the National Water Information...
thumbnail
Ponds are impoundments that have been used for flood control, water supply, irrigation, and recreation. They constitute modifications to the stream network that fragment the aquatic habitat by limiting river network connectivity necessary for fish passage. A dataset was developed to quantify small ponds as proxy measures of barriers to flow in stream networks across the State of North Carolina. The USGS used a combination of the 2016 National Land Cover Dataset (NLCD) and the National Hydrography Dataset (NHD) Plus High Resolution to identify 105,560 small ponds that are less than 10 acres in size. The features are more refined than larger scale assessments such as those in the NHDPlus High Resolution and provide...
thumbnail
The U.S. Geological Survey (USGS) has a long history of working cooperatively with the South Carolina Department of Transportation to develop methods for estimating the magnitude and frequency of floods for rural and urban basins that have minimal to no regulation or tidal influence. As part of those previous investigations, flood-frequency estimates have been generated at selected regulated streamgages. This is the data release for the report which assesses the effects of impoundments on flood-frequency characteristics by comparing annual exceedance probability (AEP) streamflows from pre- and post-regulated (before and after impoundment) periods at 18 USGS long-term streamgages, which is defined as a streamgage...
thumbnail
The digital flood-inundation maps included in this data release were developed for a 16.4-mile reach of the Yellow River from 0.5-mile upstream of River Drive to Centerville Highway (Georgia State Route 124), Gwinnett County, Georgia (Ga.) to depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at two U.S. Geological Survey (USGS) streamgages in the mapped area. The maps for the 9.0-mile reach from 0.5-mile upstream of River Drive to Stone Mountain Highway (US Route 78) are referenced to the Yellow River, near Snellville, Georgia (Ga.; station 02206500), and the maps for the 7.4-mile reach from Stone Mountain Highway to Centerville Highway are referenced to the...
thumbnail
In cooperation with the South Carolina Department of Transportation, the U.S. Geological Survey updated the foundational geospatial layers for the South Carolina StreamStats web application (https://water.usgs.gov/osw/streamstats/), which provides analytical tools useful for water-resources planning and management (Kolb and others, 2018). This dataset presents the digital elevation model, lidar-derived flow direction, flow accumulation, and percent basin slope raster data layers used for analysis in StreamStats. It also includes the streamline vector data used to hydro-enforce the raster data layers.
thumbnail
Reliable estimates of the magnitude and frequency of floods are an important part of the framework for hydraulic-structure design and flood-plain management. Annual peak flows measured at U.S. Geological Survey streamgages are used to compute flood-frequency estimates at those streamgages. However, flood-frequency estimates also are needed at ungaged stream locations. A process known as regionalization was used to develop regression equations to estimate the magnitude and frequency of floods at ungaged locations. This dataset contains the supporting tables and updated hydrologic region boundaries used in the 2017 flood-frequency study for Georgia, South Carolina, and North Carolina.
thumbnail
Reliable peak-streamflow information is critical for proper design of stream-related infrastructure, such as bridges, and StreamStats is a Web-based Geographic Information Systems (GIS) application that provides a user-friendly interface to estimate peak flows (https://streamstats.usgs.gov/ss/). StreamStats develops these peak-flow estimates using basin characteristics for the entire contributing area to a user-selected point; however, infrastructure planners often need to estimate flows for an area downstream from a known control such as a reservoir release or a weir. This dataset was compiled in cooperation with the South Carolina Department of Transportation (SCDOT) to provide a GIS layer of filtered regulation...
thumbnail
Artificial drainage has major ecosystem impacts through the development of extensive ditch networks that reduce storage and induce large-scale vegetation changes. This has been a widespread practice of water table management for agriculture in Eastern North Carolina. However, these features are challenging to identify, and (because of their structure) have been determined by non-natural factors. A dataset of open ditches was processed by calculating terrain openness (also called positive openness): a value based on a line-of-sight approach to measure the surrounding eight zenith angles as viewed above the landscape surface. The result from calculating openness with high resolution digital elevation models (DEMs...
Reliable estimates of the magnitude and frequency of floods are an important part of the framework for hydraulic-structure design and flood-plain management in Georgia, South Carolina, and North Carolina (study area). Flood-frequency estimates also are needed at ungaged stream locations. A process known as regionalization was used to develop regression equations to estimate the magnitude and frequency of floods at ungaged locations in the study area. The previous update to rural flood frequency estimates in the study area was published using annual peak-flow data through 2006. This updated study utilizes newer methods outlined in Bulletin 17C and newly developed regional skew to estimate the magnitude and frequency...
thumbnail
In cooperation with the South Carolina Department of Transportation, the U.S. Geological Survey calculated four land cover basin characteristics rasters from the National Land Cover Database (NLCD) 2019 as part of updating the South Carolina StreamStats application. These datasets are raster representations of impervious surface, developed, forested, and storage land cover attributes within the South Carolina StreamStats study area, and will be served in the South Carolina StreamStats application (https://www.usgs.gov/streamstats) to describe delineated watersheds. The StreamStats application provides access to spatial analytical tools that are useful for water-resources planning and management, and for engineering...
Reliable estimates of the magnitude and frequency of floods are an important part of the framework for hydraulic-structure design and flood-plain management in Georgia, South Carolina, and North Carolina (study area). Flood-frequency estimates also are needed at ungaged stream locations. A process known as regionalization was used to develop regression equations to estimate the magnitude and frequency of floods at ungaged locations in the study area. The previous update to rural flood frequency estimates in the study area was published using annual peak-flow data through 2006. This updated study utilizes newer methods outlined in Bulletin 17C and newly developed regional skew to estimate the magnitude and frequency...
thumbnail
Reliable estimates of the magnitude and frequency of floods are an important part of the framework for hydraulic-structure design and flood-plain management in Georgia, South Carolina, and North Carolina (study area). Annual peak flows measured at U.S. Geological Survey streamgages were used to compute at-site flood-frequency estimates at those streamgages in the study area based on annual peak-flows records through 2017. Flood-frequency estimates also are needed at ungaged stream locations. A process known as regionalization was used to develop regression equations to estimate the magnitude and frequency of floods at ungaged locations. This model archive provides the inputs and outputs for (1) the at-site flood-frequency...
thumbnail
Artificial drainage has major ecosystem impacts through the development of extensive ditch networks that reduce storage and induce large-scale vegetation changes. This has been a widespread practice of water table management for agriculture in Eastern North Carolina. However, these features are challenging to identify, and because of their structure, have been determined by non-natural factors. A dataset of open ditches was processed by calculating terrain openness (also called positive openness): a value based a line-of-sight approach to measure the surrounding eight zenith angles as viewed above the landscape surface. The result from calculating openness with high resolution digital elevation models (DEMs, or...


    map background search result map search result map Flood-inundation area for the Withlacoochee River in Lowndes County, Georgia from Skipper Bridge Road to St. Augustine Road Flood inundation and flood depth for the Yellow River in Gwinnett County, Georgia based on water-surface elevation at the U.S. Geological Survey streamgages Yellow River, near Snellville, Georgia (02206500) and Yellow River at Ga. 124, near Lithonia, Georgia (02207120) Stream Lines Used to Produce the South Carolina StreamStats 2018 Release Locations of Dams and Basins in South Carolina, derived from U.S. Army Corps Engineers National Inventory of Dams Indicators of Hydrologic Alteration in North Carolina Catchments: Small Ponds and Artificial Drainage Lidar-Derived Ditches in Eastern North Carolina with Transportation attributes, 2014-2015 North Carolina Small Ponds Under 10 Acres, 2022 Summary Descriptive Characteristics by Catchment Concerning Lidar-derived Ditches in Eastern North Carolina, 2014-2015 Magnitude and Frequency of Floods for Rural Streams in Georgia, South Carolina, and North Carolina, 2017-Data Model Archive for Magnitude and Frequency of Floods for Rural Streams in Georgia, South Carolina, and North Carolina, 2017 Region Layers for USGS South Carolina Bohman Method Hydrograph in StreamStats Tables and associated data for effects of impoundments on selected flood-frequency and daily mean streamflow characteristics in Georgia, South Carolina, and North Carolina Land Cover Basin Characteristics Rasters from NLCD 2019 for South Carolina StreamStats Foundational Geospatial Layers for South Carolina StreamStats 2024 Flood inundation and flood depth for the Yellow River in Gwinnett County, Georgia based on water-surface elevation at the U.S. Geological Survey streamgages Yellow River, near Snellville, Georgia (02206500) and Yellow River at Ga. 124, near Lithonia, Georgia (02207120) Flood-inundation area for the Withlacoochee River in Lowndes County, Georgia from Skipper Bridge Road to St. Augustine Road Lidar-Derived Ditches in Eastern North Carolina with Transportation attributes, 2014-2015 Summary Descriptive Characteristics by Catchment Concerning Lidar-derived Ditches in Eastern North Carolina, 2014-2015 Locations of Dams and Basins in South Carolina, derived from U.S. Army Corps Engineers National Inventory of Dams Indicators of Hydrologic Alteration in North Carolina Catchments: Small Ponds and Artificial Drainage North Carolina Small Ponds Under 10 Acres, 2022 Region Layers for USGS South Carolina Bohman Method Hydrograph in StreamStats Foundational Geospatial Layers for South Carolina StreamStats 2024 Land Cover Basin Characteristics Rasters from NLCD 2019 for South Carolina StreamStats Stream Lines Used to Produce the South Carolina StreamStats 2018 Release Tables and associated data for effects of impoundments on selected flood-frequency and daily mean streamflow characteristics in Georgia, South Carolina, and North Carolina Model Archive for Magnitude and Frequency of Floods for Rural Streams in Georgia, South Carolina, and North Carolina, 2017 Magnitude and Frequency of Floods for Rural Streams in Georgia, South Carolina, and North Carolina, 2017-Data