Skip to main content
Advanced Search

Filters: Tags: {"type":"CMS Status"} (X) > Types: OGC WFS Layer (X)

486 results (174ms)   

View Results as: JSON ATOM CSV
thumbnail
Fruit-producing shrubs such as huckleberries, salal, and hazelnut are an important component of social history and traditional tribal diets in the Pacific Northwest. The fruits of these shrubs are also an important food source for foraging wildlife and pollinators, and serve as the basis for both non-tribal harvesting and small-scale commercial operations. Among land managers and tribes, there is a strong interest in preserving and restoring these culturally important plant species across the Pacific Northwest. However, limited knowledge is available on the current ranges of shrub species, or how climate change will impact future ranges or the timing of flowering and fruiting for key Northwest shrub species. ...
thumbnail
As our world changes and communities are faced with uncertain future climate conditions, decision making and resource planning efforts can often no longer rely on historic scientific data alone. Scientific projections of what might be expected in the future are increasingly needed across the country and around the world. Scientists and researchers can develop these projections by using computer models to simulate complex elements of our climate and their interactions with ecosystems, wildlife, and biodiversity. While an extensive array of general circulation models (GCMs, climate models of the general circulation of the atmosphere and ocean) exist, there is currently a lack of global biodiversity models. This project...
thumbnail
California - one of the nation's most populous states - hosts extensive public lands, crown-jewel national parks, and diverse natural resources. Resource managers in federal, state, tribal, and local agencies face challenges due to environmental changes and extreme events such as severe droughts, heat waves, flood events, massive wildfires, and forest dieback. However, state-of-the-art research that could aid in the management of natural resources facing these challenges is typically slow to be applied, owing to limited time and capacity on the part of both researchers and managers. This project aims to accelerate the application of science to resource management by facilitating the translation and synthesis of...
thumbnail
The U.S. network of 160 weather radars known as NEXRAD (NEXt generation RADar) is one of the largest and most comprehensive terrestrial sensor networks in the world. To date, the National Climatic Data Center (NCDC) has archived about 2 petabytes data from this system. Although designed for meteorological applications, these radars readily detect the movements of birds, bats, and insects. Many of these movements are continental in scope, spanning the entire range of the network. It is unclear whether biological or meteorological data comprise the bulk of the archive. Regardless, the biological portion is sufficiently large that it likely represents one of the largest biological data archives in the world, perhaps...
thumbnail
This project produced land use change change forecasts for the United States at the national scale, based on the National Land Cover Dataset (NLCD) 2001. Both urban and agricultural expansion were modeled at 300-meter resolution at ten-year intervals from 2010 to 2050.
thumbnail
The goal of the glacial lakes regional study was to predict the impacts of climate and land use change on coldwater fish habitat in the glacial lakes region, which covers most of Minnesota, Wisconsin, and Michigan. The study includes both top-level, regional analyses and more detailed case studies of individual lakes. The goal of this project was to provide (1) projections of land use and climate change impacts on the trophic status of Midwestern coldwater glacial lakes, (2) projections of land use and climate change impacts on the regional distribution of coldwater lake oxythermal habitat, and (3) guidance on the types of coldwater lakes in which locations will be the most or least vulnerable to land use and climate...
thumbnail
Small Pacific islands are especially vulnerable to climate change. Challenges these coastal communities face include sea level rise, erosion, saltwater intrusion, flooding, droughts, and coral bleaching which in turn affect food and water security, infrastructure, and the health of humans and ecosystems. These small islands also have limited resources; therefore, managing them effectively is important to ensure sustainable communities and healthy environments. To support natural resource management, accurate, detailed, up-to-date geospatial data and products are vital to help monitor these resources, identify potential threats, and reveal potential solutions. Through this project, the University of Guam (UoG)...
thumbnail
A major goal of the Climate Science Center network is to conduct science and develop timely science products and tools that are directly relevant and useful to decision-makers and natural resource managers. A crucial first step in producing this actionable science is understanding the highest priority science and information needs of natural resource managers and planners. Through this project, the Southwest Climate Science Center will conduct a structured rapid assessment to identify and understand manager needs and priorities in the Southwest region. The project team will also work directly with managers and stakeholders to assess their perceptions regarding the co-production of science and preferences on...
thumbnail
The goals of this project were to: (1) produce a state-of-the-art assessment and synthesis of climate change projections, impacts, vulnerabilities, adaptive capacity, and prospects for mitigation and adaptation actions in the Southwest in support of the regional contribution to the National Climate Assessment; (2) develop an inventory of federal partners and stakeholders involved with climate adaptation programs, and (3) forge stronger bonds between the DOI-SW CSC, the three NOAA-RISAs in the Southwest, and the Landscape Conservation Cooperatives.
thumbnail
Climate change is projected to cause earlier and less snowmelt, potentially reducing water availability for terrestrial and aquatic ecosystems and for municipal and agricultural water supplies. However, if forested landscapes can be managed to retain snow longer, some of these environmental and financial impacts may be mitigated. Results from our research team demonstrate that in the Pacific Northwest (PNW), opening dense forest canopies through creating forest gaps will generally lead to more snow accumulation and later melt (i.e., up to 13 weeks later). However, under certain conditions, such as locations on ridges with high wind speeds and sunny south-facing slopes, the snow that accumulated in the forest is...
thumbnail
The Northwest and North Central Climate Adaptation Science Centers (NW and NC CASCs) work in partnership with regional natural resource management communities to provide high priority science information and products needed for climate adaptation. In parallel with the U.S. Fish and Wildlife Service (USFWS) Region 6, the NW and NC CASCs prioritize science to inform sagebrush steppe and grassland ecosystem conservation, emphasizing the application of climate adaptation strategies that support at-risk populations and human-ecological communities within these ecosystems. To improve their ability to deliver effective and actionable science, the NW and NC CASCs must continually engage with regional partners and stakeholders...
thumbnail
In many places around the world, spring events, like warming temperatures, are coming earlier and fall events are coming later than they have in the past. These changes have implications for the phenology, or the timing of natural life events (e.g. the timing of plant flowering in Spring or leaves falling in Autumn), of many plant species. However, not all species and regions are changing at the same rate, which can lead to mismatches (e.g. between the emergence of plants and pollinators in early spring). Many interactions in nature depend on timing and, as such, phenology affects nearly all aspects of the environment, including the abundance, distribution, and diversity of organisms, ecosystem services, food webs,...
thumbnail
The sagebrush ecosystem is home to diverse wildlife, including big-game and Greater sage-grouse. Historic and contemporary land-uses, large wildfires, exotic plant invasion, and woodland expansion all represent threats to this multiple-use landscape. Efforts of federal and state agencies and private landowners across the landscape are focused on restoration and maintenance of conditions that support wildlife, livestock, energy development, and many other uses. However, this semi-arid landscape presents challenges for management due to highly variable patterns in growing conditions that lead to differences in plant composition, fuel accumulation, and vegetation recovery. Much of this variability is created by soil...
thumbnail
Rates of glacier loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth. These changes in glacier volume and extent will affect the flow and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska (GOA). Runoff from glaciers accounts for about half of the land-to-ocean movement of freshwater into the GOA, strongly influencing the freshwater and marine ecosystems along the coast. Runoff from glaciers, for example, significantly impacts the water temperature and clarity of aquatic habitats, which are important conditions for salmon reproduction. Moreover, runoff from glaciers along the GOA is an important factor in the structure of the...
thumbnail
Ongoing and future climate change throughout Alaska has the potential to affect terrestrial ecosystems and the services that they provide to the people of Alaska and the nation. These services include the gathering of food and fiber by Alaskan communities, the importance of ecosystems to recreation, cultural, and spiritual activities of people in Alaska, and the way that land cover and vegetation in ecosystems affect temperature and water flow (runoff, flooding etc.) throughout the state. Assessments of the effects of climate change on these “ecosystem services” have been hindered by a lack of tools (e.g. computer models) capable of forecasting future landscapes in a changing climate while taking into account numerous...
thumbnail
Ongoing climate change has the potential to negatively impact Alaska’s ecosystems and the critical services that they provide. These ecosystem services include supplying food and fiber for Alaskan communities, offering opportunities for recreational, cultural, and spiritual activities, and regulating temperature and water flow (runoff, flooding, etc.). Scientists build models to better understand processes and interactions in the natural environment and to use what we know to predict what will happen in the future, so that we can plan for it. Researchers from multiple institutions and disciplines developed an Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada. The model helps forecast how climate...
thumbnail
The western coastline of Alaska is highly susceptible to coastal storms, which can cause erosion, flooding, and saltwater storm surge, affecting natural ecosystems, human communities, and commercial activity. Historically, a large buffer of ice along the shoreline has protected this region from some of the more severe effects of coastal storms. However, climate change may not only increase the frequency and intensity of storms, but also cause a loss of shoreline ice, possibly increasing the incidence of coastal erosion and flooding and introducing saltwater to freshwater environments. These hazards have the potential to substantially disrupt the environment and commerce in the region, but more information is needed...
thumbnail
This project was designed to use climate models to produce projections of changes in sea temperatures and ocean chemistry for coastal marine areas in Micronesia as well as reports that describe the outlook of culturally important marine sites in Guam and CNMI. The projections and maps were expected show what the current state of climate science suggests the future holds for marine areas in Micronesia if we continue to use fossil fuels aggressively. These projections of sea conditions will become the foundation of outlook reports for Tumon Bay in Guam, Lao Lao Bay and Saipan Lagoon in Saipan, and northern Tinian Island. The selected areas are among the most important sites for recreation in Guam and CNMI and, as...
thumbnail
Surrounded by saltwater, Hawaiian communities depend on freshwater streams for consumption, irrigation, traditional Hawaiian practices, and habitat for native fish and other stream life. It is important to be able to predict how Hawaiʻi’s streams will be affected by changing rainfall patterns to enable sustainable management of critical freshwater resources. However, to date, limited data and the uncertain effects of climate change have hindered predictions of future streamflow. Through this project, scientists developed a model that provides a way to estimate future stream low flow (streamflow during a period of prolonged dryness) by categorizing streams based on their physical characteristics. While the model...
thumbnail
The Republic of the Marshall Islands (RMI) spreads over 29 atolls and has a population of over 50,000 people; over 27,000 of those people live on the Majuro Atoll, RMI’s capital. Sea level rise threatens the very existence of RMI as high-end projections of sea level rise by the end of the century exceed the average elevation of these low atoll reef islands. Already, waves wash over Majuro during “king tides” when strong winds blow from the west across the broad lagoon, or when there are high open ocean waves. Flooding waves breach island shores in multiple locations and wash into homes, cemeteries, across roads, and into commercial districts. Over the past decade, there has been a widespread exodus of residents...


map background search result map search result map Synthesis of Current Science and Assessment of Science Needs for Adaptation in the Southwest Development of the Alaska Integrated Ecosystem Model to Illustrate Future Landscape Change Understanding the Impacts of Permafrost Change: Providing Input into the Alaska Integrated Ecosystem Model Modeling Western Alaska Coastal Hazards Assessing Links between Glaciers and the Northern Pacific Coastal Temperate Rainforest Ecosystem Projected Land Use Change for the Conterminous United States (National Assessment) Predicting Coldwater Fish Habitat in Lakes of the Glacial Lakes Region under Changing Land Use and Climate Regimes (Local Assessment) Forest Management Tools to Maximize Snow Retention under Climate Change Modeling the Response of Hawaiʻi’s Streams to Future Rainfall Conditions Assessing the Sustainability of Culturally Important Marine Sites in Guam and CNMI Workshops and Collaborations to Improve Biodiversity and Climate Modeling Building Capacity for Coordination of Strategic Science Research in the  US-Affiliated Pacific Islands Simulating and Projecting Future Impacts of Sea Level Rise on Majuro Atoll Understanding Changes to the Timing of Natural Events (Phenology) for Plants in the Water-Limited Southwest Climate Impacts on the Locations and Availability of Traditional Food Sources from Native Northwestern Shrubs Assessing Stakeholder Needs for Effective Actionable Science Improving and Accelerating the Application of Science to Natural Resource Management in California Understanding Local Resistance and Resilience to Future Habitat Change in the Sagebrush Ecosystem Partnerships to Inform Climate Adaptation and Natural Resource Management in the Northwest and North Central U.S. Simulating and Projecting Future Impacts of Sea Level Rise on Majuro Atoll Assessing the Sustainability of Culturally Important Marine Sites in Guam and CNMI Modeling the Response of Hawaiʻi’s Streams to Future Rainfall Conditions Predicting Coldwater Fish Habitat in Lakes of the Glacial Lakes Region under Changing Land Use and Climate Regimes (Local Assessment) Forest Management Tools to Maximize Snow Retention under Climate Change Climate Impacts on the Locations and Availability of Traditional Food Sources from Native Northwestern Shrubs Improving and Accelerating the Application of Science to Natural Resource Management in California Understanding Changes to the Timing of Natural Events (Phenology) for Plants in the Water-Limited Southwest Assessing Stakeholder Needs for Effective Actionable Science Modeling Western Alaska Coastal Hazards Synthesis of Current Science and Assessment of Science Needs for Adaptation in the Southwest Assessing Links between Glaciers and the Northern Pacific Coastal Temperate Rainforest Ecosystem Partnerships to Inform Climate Adaptation and Natural Resource Management in the Northwest and North Central U.S. Understanding Local Resistance and Resilience to Future Habitat Change in the Sagebrush Ecosystem Development of the Alaska Integrated Ecosystem Model to Illustrate Future Landscape Change Understanding the Impacts of Permafrost Change: Providing Input into the Alaska Integrated Ecosystem Model Projected Land Use Change for the Conterminous United States (National Assessment) Building Capacity for Coordination of Strategic Science Research in the  US-Affiliated Pacific Islands Workshops and Collaborations to Improve Biodiversity and Climate Modeling