Skip to main content
Advanced Search

Filters: Tags: {"scheme":"USGS Thesaurus"} (X) > Types: OGC WFS Layer (X)

3,628 results (452ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tags (with Scheme=USGS Thesaurus)
View Results as: JSON ATOM CSV
thumbnail
Dataset contains contours at 10-foot intervals of the San Antonio Reservoir, California, based on the bathymetric survey conducted in April of 2018. Files are provided as geospatial shapefiles and CAD (.dwg file extension) files.
thumbnail
As part of a research study in cooperation with the U.S. Environmental Protection Agency (EPA) and the U.S. Army at Fort Irwin National Training Center, the U.S. Geological Survey (USGS) evaluated unsaturated zone soil property data of cores from a borehole for a newly drilled monitoring well near a dry well and Four-plex baseball field. Cores were continuous from land surface down to 240 feet below land surface and were drilled by consultants to EPA using sonic rotary–a fluidless drilling technique. Data on this page consist of: 1) field drilling notes from USGS and consultants to EPA (GeoSystems Analysis, Inc., Tucson, Arizona); 2) field descriptions of core lithology–including grain size, sorting, color, mineralogy,...
thumbnail
As part of a larger groundwater research study conducted at the U.S. Army Fort Irwin National Training Center (NTC), located approximately 35 miles north-northeast of Barstow, California, the U.S. Environmental Protection Agency (EPA), the U.S. Army, and the U.S. Geological Survey (USGS) have cooperated to evaluate unsaturated zone soil property data of cores from the borehole for a newly drilled monitoring well (ESW2B). Specific horizons of interest were identified and selected for detailed grain-size distribution analysis using the Fritsch Analysette A28 Image Sizer (particle analyzer) located at the USGS California Water Science Center (CAWSC) in San Diego, CA. The particle analyzer identified circularity and...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the California State Water Resources Control Board (SWRCB), compiled Fall 2017 fluid level elevation data from idle oil and gas wells in the Oxnard Oil Field to estimate vertical hydraulic head difference between oil production and overlying groundwater aquifer zones. Fluid elevations came from two sources, measurements in idle oil and gas wells and groundwater elevations in water wells in the overlying aquifer estimated at the points of idle well measurements using geographic information system (GIS) procedures. The fluid elevations from idle oil and gas wells were compiled by the California Geologic Energy Management Division (CalGEM) as part of their Idle...
thumbnail
Model archive summary (MAS) describing the development of a suspended-sediment concentration (SSC) surrogate regression model for the Hookton Slough near Loleta, CA water quality station (USGS site ID# 404038124131801). A continuous 15-minute SSC record was computed using this regression model for the period of record (03-04-2016 to 09-10-2019). The computed SSC record can be found on NWIS Web at https://waterdata.usgs.gov/ca/nwis/uv?site_no=404038124131801. The SSC record was used to assess ambient SSC conditions, the availability of suspended sediment to support surface deposition and elevation gain in adjacent salt marshes, and to characterize salt marsh resiliency to climate change impacts in Humboldt Bay, CA.
thumbnail
One of the largest hydraulic mines (1.6 km2) is located in California’s Sierra Nevada within the Humbug Creek watershed and Malakoff Diggins State Historic Park (MDSHP). MDSHP’s denuded and dissected landscape is composed of weathered Eocene auriferous sediments susceptible to chronic rill and gully erosion whereas block failures and debris flows occur in more cohesive terrain. This data release includes a 2014 digital elevation model (DEM), a study area boundary, and a geomorphic map. The 2014 DEM was derived from an available aerial LiDAR dataset collected in 2014 by the California Department of Conservation. The geomorphic map was derived for the study area from using a multi-scale spatial analysis. A topographic...
thumbnail
This child item dataset contains a shapefile of locations where USGS benchmarks were installed along the Old Erie Canal. This data release contains spatial datasets of bathymetry, water velocity, water quality, and infrastructure of a 30.8 mile reach of the Old Erie Canal between the Town of DeWitt and its junction with the current Erie Canal of the New York State Canal System in Verona, near Rome, New York during 2018 and 2019.
thumbnail
This child item dataset contains a shapefile of the geographic extent of the Old Erie Canal. This data release contains spatial datasets of bathymetry, water velocity, water quality, and infrastructure of a 30.8 mile reach of the Old Erie Canal between the Town of DeWitt and its junction with the current Erie Canal of the New York State Canal System in Verona, near Rome, New York during 2018 and 2019.
thumbnail
The U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, the Tug Hill Commission, the Jefferson County Soil and Water Conservation District, the Oswego County Soil and Water Conservation District, and the Tug Hill Land Trust studied the northern and central parts of the Tug Hill glacial aquifer to help communities make sound decisions about the groundwater resource. This child item dataset contains locations of water level contours for the northern and central parts of the Tug Hill aquifer.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the nine Chesapeake Bay River Input Monitoring (RIM) stations for the period 1985 through 2015. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Yields (represents the mass of constituent transported from a unit area of a given watershed) are used to compare the export loads from one basin to another. Yield results are obtained by dividing the annual load (pounds) of a given constituent by the respective watershed...
thumbnail
A three-dimensional hydrogeologic framework model (3D HFM) of the westernmost western Snake River Plain (WSRP) aquifer system was prepared to represent the subsurface distribution and thickness of four hydrogeologic units. The primary source of data for the 3D HFM was lithologic data from a total of 291 well-driller reports. These data were then processed using Rockware Rockworks17 three-dimensional modeling software. This dataset consists of five comma-delineated CSV files containing well information: location, lithology, well construction, aquifer, and comments. It is one of three related datasets.
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.