Skip to main content
Advanced Search

Filters: Tags: {"scheme":"None"} (X) > partyWithName: Paul D Henne (X)

7 results (16ms)   

View Results as: JSON ATOM CSV
thumbnail
Geospatial data were developed to characterize pre-fire biomass, burn severity, and biomass consumed for the Black Dragon Fire that burned in northern China in 1987. Pre-fire aboveground tree biomass (Mh/ha) raster data were derived by relating plot-level forest inventory data with pre-fire Landsat imagery from 1986 and 1987. Biomass data were generated for individual species: Dahurian larch (Larix gmelinii Rupr. Kuzen), white birch (Betula platyphylla Suk), aspen (Populus davidiana Dode and Populus suaveolens Fischer), and Mongolian Scots pine (Pinus sylvestris var. mongolica Litvinov). A raster layer of total aboveground tree biomass was also generated. Burned area was manually delineated using the normalized...
thumbnail
This data release provides output produced by a statistical, aridity threshold fire model for 11 extensively forested ecoregions in the western United States. We identified thresholds in fire-season climate water deficit (FSCWD) that distinguish years with limited, moderate, and extensive area burned for each ecoregion. We developed a new area burned model using these relationships and used it to simulate annual area burned using historical climate from 1980 - 2020 and output from global climate models (GCMs) from 1980 - 2099. The data release includes a comparison of mean annual FSCWD for 13 GCMs that we used to select five GCMs that bracket the range of conditions projected for the RCP 8.5 emissions scenario....
thumbnail
Landscape carbon (C) flux estimates are necessary for assessing the ability of terrestrial ecosystems to buffer further increases in anthropogenic carbon dioxide (CO2) emissions. Advances in remote sensing have allowed for coarse-scale estimates of gross primary productivity (GPP) (e.g., MODIS 17), yet efforts to assess spatial patterns in respiration lag behind those of GPP. Here, we demonstrate a method to predict growing season soil respiration at a regional scale in a forested ecosystem. We related field measurements (n=144) of growing season soil respiration across subalpine forests in the Southern Rocky Mountains ecoregion to a suite of biophysical predictors with a Random Forest model (30 m pixel size). We...
This data release provides inputs needed to run the LANDIS-II landscape change model, NECN and Base Fire extensions for the Greater Yellowstone Ecosystem (GYE), USA, and simulation results that underlie figures and analysis in the accompanying publication. We ran LANDIS-II simulations for 112 years, from 1988-2100, using interpolated weather station data for 1988-2015 and downscaled output from 5 general circulation models (GCMs) for 2016-2100. We also included a control future scenario with years drawn from interpolated weather station data from 1980-2015. Model inputs include raster maps (250 × 250 m grid cells) of climate regions and tables of monthly temperature and precipitation for each climate region. We...
This data release provides inputs needed to run the LANDIS PRO forest landscape model and the LINKAGES 3.0 ecosystem process model for the area burned by the Black Dragon Fire in northeast China in 1987, and simulation results that underlie figures and analysis in the accompanying publication. The data release includes the fire perimeter of Great Dragon Fire; input data for LINKAGES including soils, landtype, and climate data; initial conditions of stands in the study area before the Great Dragon Fire; and maps of LANDIS PRO output for each model grid cell including total trees, total biomass (Mg/ha), and tree density (trees/ha) in two-year timesteps.
thumbnail
This data release provides inputs needed to run the LANDIS PRO forest landscape model and the LINKAGES 3.0 ecosystem process model for the temperate-boreal ecotone Great Xing’an Mountains of northeastern China, and simulation results that underlie figures and analysis in the accompanying publication. The study compared the impacts of small and large fires on vegetation dynamics. The data release includes input data for LINKAGES including soils, landtype, and climate data; initial conditions of stands in the study area for LANDIS PRO; and maps of LANDIS PRO output for each model grid cell including total trees, total biomass (Mg/ha), and tree density (trees/ha) in ten-year timesteps. Output for four climate and fire...
thumbnail
Wildfires and housing development have increased since the 1990s, presenting unique challenges for fire management. However, it is unclear how the relative influences of housing growth and changing wildfire occurrence have contributed to risk to homes. We fit a random forest using weather, land cover, topography, and past fire history to predict burn probabilities and uncertainty intervals. Then, we estimated risk at 1-km resolution and monthly intervals from 1990 through 2019 by combining predicted burn probabilities with housing density across the Southern Rocky Mountains. We used 3 scenarios to evaluate how housing growth and changes in burn probability influenced risk individually and combined (observed, 1990...


    map background search result map search result map Data release for estimating soil respiration in a subalpine landscape using point, terrain, climate and greenness data Pre-fire biomass, burn severity, biomass consumption, and fire perimeter data for the 1987 Black Dragon Fire in China Landscape inputs and simulation output for the LANDIS-II model in the Greater Yellowstone Ecosystem Data release for: Spatially explicit reconstruction of post-megafire forest recovery through landscape modeling Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA (data release) Data inputs and outputs for simulations of species distributions in response to future fire size and climate change in the boreal-temperate ecotone of northeastern China Simulated annual area burned for eleven extensively forested ecoregions in the western United States for 1980 - 2099 Pre-fire biomass, burn severity, biomass consumption, and fire perimeter data for the 1987 Black Dragon Fire in China Data inputs and outputs for simulations of species distributions in response to future fire size and climate change in the boreal-temperate ecotone of northeastern China Landscape inputs and simulation output for the LANDIS-II model in the Greater Yellowstone Ecosystem Data release for: Spatially explicit reconstruction of post-megafire forest recovery through landscape modeling Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA (data release) Data release for estimating soil respiration in a subalpine landscape using point, terrain, climate and greenness data Simulated annual area burned for eleven extensively forested ecoregions in the western United States for 1980 - 2099